
i

PREFACE

These notes are the English version of notes for a one-semester undergraduate
course through the medium of Irish which is to be offered for the first time at NUI
Maynooth in the 2006–07 academic year. The writing of both sets of notes was
made possible by the kind support of Bord Gaeilge na hOllscoile, NUI Maynooth.

I would like to thank my wife Denise for her patience and understanding with
the long nights I spent writing both sets of notes.

Stephen M. Buckley
June 2006





Contents

Preface i

1 Introduction 1

1.1 Fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Dynamical Systems and Chaos . . . . . . . . . . . . . . . . . . . . 3

1.3 These notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Fractals 7

2.1 Examples of fractals . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Iterated function system . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Measure and dimension 17

3.1 Minkowski dimension of a set . . . . . . . . . . . . . . . . . . . . . 17

3.2 Hausdorff measure and Hausdorff dimension . . . . . . . . . . . . . 21

4 Dynamics: Preliminaries 27

4.1 Notation and terminology . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Calculus results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Dynamics and finite sets . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Order 33

5.1 Conjugation and hyperbolicity . . . . . . . . . . . . . . . . . . . . 33

5.2 The dynamics of x 7→ ax + b . . . . . . . . . . . . . . . . . . . . . . 37

5.3 The dynamics of a quadratic: first thoughts . . . . . . . . . . . . . 38

5.4 The logistic map for 0 < λ < 3 . . . . . . . . . . . . . . . . . . . . 39

6 Chaos 45

6.1 The logistic map for λ > 4 . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Symbolic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3 Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.4 Semi-conjugation and the logistic map for λ = 4 . . . . . . . . . . 52

7 Periodic points 59

7.1 Sharkovsky’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2 The Schwarzian derivative . . . . . . . . . . . . . . . . . . . . . . . 62

7.3 Bifurcation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 Epilogue 81

8.1 Where do we go from here? . . . . . . . . . . . . . . . . . . . . . . 81

8.2 Other sources of information . . . . . . . . . . . . . . . . . . . . . 81

iii



iv CONTENTS

Bibliography 83

Index 85



Chapter 1

Introduction

1.1 Fractals

A fractal is a set that remains “complicated” at all scales no matter how small.
One example of a fractal is any natural coastline. If you look at a map of the
world, you see that the outline of the continents is complicated in the sense
that it is not well approximated by a few line segments. A map of Europe is
equally complicated: compared with a map of the whole world, it has lost all the
complications of the other continents, but it has gained complications that were
too small to show up in the map of the whole world. In a similar fashion a map
of Ireland or just a part of the coastline of Ireland gain smaller scale complexity
to compensate for the loss of larger scale complexity.

The fact that small scale maps and large scale maps of coastlines both look
about equally complicated is mirrored in many other areas of nature. For instance
under a powerful microscope a single cell from a tree or a single elephant hair
look as complicated as the whole tree or elephant do to the naked eye. Such
complexity across all (or more truthfully, a large number of) scales is the most
significant difference between most real-life objects and most mathematical sets
and functions that you have seen in all your previous mathematics courses. For
instance, suppose you plot in Maple the graph of pretty much any function y =
f(x) that you can think of. Whether you use a polynomial, a trigonometric
function, an exponential or log, or some complicated sum of such functions, you’ll
notice that whatever complications that are in the graph when you plot it over
a large interval disappear if you pick a sufficiently small interval. For instance a
command of the form

plot(f(x), x=-10..10)

might give a complicated looking plot (depending on the choice of f), but for
most functions f that you are likely to choose,

plot(f(x), x=-2.376..-2.375)

will produce something very like a straight line. As another example, consider
the set of points (x, y, z) satisfying x2 + y2 + z2 = r2 for some r > 0. This is
a sphere of radius r about the origin, and so very curved, but if we look at any
very small part of it, it looks flat like a piece of a plane (hence the belief for a
long time that the Earth is flat). Sets that look flatter and flatter at smaller and
smaller scales are said to be smooth and can be viewed as the exact opposite of
fractals.
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2 CHAPTER 1. INTRODUCTION

For most of its history, mathematics steered clear of fractals and mainly con-
centrated on sets that possessed some degree of smoothness. Indeed the French
term fractal/fractale (adjective/noun) was only invented in 1975 by Benôıt Man-
delbrot (1924–), the Polish-French mathematician. The advent of modern com-
puters and graphical displays have greatly helped and inspired the study of frac-
tals.

Nevertheless there are some much earlier examples of fractal sets. In 1872,
the German mathematician Karl Weierstrass (1815–1897) defined a nowhere dif-
ferentiable function that was everywhere continuous; the graph of that function
would now be called a fractal. Weierstrass’ example was hard to visualize but a
much simpler example was found by the Swedish mathematician Helge von Koch
(1870–1924) in 1904. The idea of an iterated function system is an important
way of defining fractals and it was investigated by people such as Poincaré, Fatou,
and Julia in the late 19th and early 20th centuries, and we will discuss it in more
detail in Chapters 2 agus 3.

Such sets were viewed as isolated bizarre sets until Mandelbrot highlighted
their common features: for instance, most are self-similar and their dimension is
not a whole number. We will discuss in Chapter 3 what a fractional dimension can
mean but such notions go back to the early part of the 20th century. Mandelbrot
also popularized fractals by showing how they were realistic and useful models of
many natural phenomena, including

• the shape of coastlines and other geological features;

• the structure of plants, blood vessels, and lungs;

• stock market prices;

• Brownian motion.

He argued that fractals were more intuitive and natural than the smooth objects
of traditional mathematics. On page 1 of The Fractal Geometry of Nature [11],
Mandelbrot says:

Clouds are not spheres, mountains are not cones, coastlines are not
circles, and bark is not smooth, nor does lightning travel in a straight
line.

Since fractals are inherently complicated, it is good to have some fairly simple
concepts that summarize some of their more important features. One of the most
important such concepts is the dimension of a set. There are actually several
concepts of dimension but all agree with the intuitive concept of dimension for
smooth sets. For instance, the dimension of the graph of a smooth function
y = f(x) is 1 (because a small part of it always looks like a line segment), and
the dimension of a sphere is 2 (because a small part of it looks planar). However
the dimension of a fractal is usually not an integer! We will discuss a couple
of notions of dimension in Chapter 3. The notion of Minkowski dimension is
simpler than that of Hausdorff dimension, but the latter has nicer properties and
also allows us to generalize concepts such as length and area to fractals.
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1.2 Dynamical Systems and Chaos

You have probably heard of the Butterfly Effect, now a popular and vivid syn-
onym for chaos. Indeed The Butterfly Effect was the title of a 2004 movie starring
Ashton Kutcher. The idea itself is usually ascribed to the American meteorolo-
gist Edward Lorenz (1917–) who gave a talk in 1972 entitled Predictability: Does
the Flap of a Butterfly’s Wings in Brazil Set off a Tornado in Texas? Using a
butterfly to indicate this idea may have been inspired by the 1952 Ray Bradbury
short story A Sound of Thunder in which a time traveller accidentally steps on
a butterfly in the distant past, causing big changes to the present. Lorenz’ idea
was based on the fact that weather seems to be one of those initial value systems
where two sets of initial conditions A and B that differ very little (perhaps by as
little as the flap of a butterfly’s wings) can cause the associated solutions (i.e. fu-
ture weather conditions) to evolve in such a way that this little difference grows
over time until eventually it is very large (perhaps differing by a tornado) after
a sufficiently long period of time (such as a year).

Mathematical modelling of the weather was in its infancy in the 1960s when
Edward Lorenz ran simple experimental models on his computer. After running
one particular sequence, he decided as a good scientist to replicate it, so he
re-entered a number from his printout, taken half-way through a sequence of
time intervals, and left it to run. Computers ran more slowly back then so
he went away and was surprised when he returned to find results that were
very different from his first experiment. Eventually he realized the reason: in
a moment of laziness, he had entered the number 0.506 instead of the printout
figure 0.506127. He had assumed that the small error would have stayed small
in the future but instead it had got much larger. After more experimentation,
Lorenz concluded that the slightest difference in initial conditions—even in, say,
the 20th decimal place and so much to small to measure—would eventually lead
to completely different outcomes for the solution. Since one can only hope to
minimize, but never eliminate, measurement error, it follows that although this
system was predictable in the short term (i.e. one could solve the equations at
least numerically to any desired degree of accuracy), long-term there was no
hope for a solution. This violated the basic beliefs of physics and so was rather
revolutionary. There are many such systems with such sensitive dependence
on initial conditions and this is one of the defining features of so-called chaotic
systems as opposed to stable systems.

Discussions of sensitive dependence on initial conditions and stability of sys-
tems go back much further. Oscar II, King of Sweden and Norway, held a math-
ematical competition in 1889 to celebrate his sixtieth birthday. The prize was to
be given to the best contribution related to any of a number of hard mathemat-
ical problems. The famous French mathematician Henri Poincaré (1854–1912)
was awarded the prize for a paper on the 3-body problem (describing the motion
of three bodies, such as the Sun and two planets, under gravitation). Here he
developed significant parts of what we now call the theory of dynamical systems
and chaos theory, and in particular showed that the motion of three bodies could
be unstable and chaotic.

The background to Poincaré’s work begins with the famous English mathe-
matician/physicist Isaac Newton (1643–1727), who proved that a solar system of
two bodies (i.e. the sun and one planet) is periodic (and so perfectly stable). The
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problem of three or more bodies is much more difficult and we now know that
it cannot be solved exactly. Despite the impossibility of finding exact solutions,
one could still hope to answer the question of whether this system is stable or
unstable. The system would be unstable if for instance it exhibited sensitive de-
pendence on initial conditions, or even worse: will the Earth always remain about
the same distance from the Sun, or will the gravitational effects of the larger plan-
ets eventually cause us to spiral into the sun or out to the cold depths of space?
The great French mathematician Pierre-Simon Laplace (1749–1827) tried to solve
this problem by making some simplifying assumptions but unfortunately these
very assumptions invalidated his work. It was not after Poincaré’s work that it
began to become clear that just about any reasonable looking simplification of
the problem would make the solution completely invalid in the long term. Es-
sentially there are no short-cuts to the calculation of the long-term evolution of
a chaotic system from given initial conditions.

There has been some more recent progress on the problem of the stability
of the solar system. The mathematicians Andrei Kolmogorov (Russian; 1903–
1987), Vladimir Arnol’d (Russian; Kolmogorov’s student; 1937–) and Jürgen
Moser (German-American; 1928–1999) are responsible for what we now call
KAM theory. This powerful theory in particular says that sufficiently tame
solar systems are stable, but it does not give an answer for our own solar system.
On the other hand in wilder solar systems there are certainly problems: if Jupiter
were 100 times more massive, the Earth’s orbit would change erratically to the
extent that life as we know it would be impossible. Is our solar system on the
right side of the dividing line between tame and wild systems? We do not know!
Of course even if the answer were that it is tame, over very long periods of time
we also have to worry about gravitational effects external to our solar system:
a star might wander too close and upsets our solar system, or a nearby dwarf
galaxy might cause great upheaval throughout our part of the Galaxy.

Returning to the relative simplicity of our solar system in isolation, the French
mathematician Jacques Lasker estimated numerically in 1989 that an initial error
of 15 meters in the orbital position of the Earth would make it impossible to
predict where the Earth would be in its orbit in just over 100 million years’ time.

A lot of systems can be viewed abstractly at a particular point in time as
a set of data D (for instance in the case of the Earth’s orbit the data would
give velocity and position relative to the sun), together with a function f that
gives the new data one unit of time into future (perhaps a year in the case of the
Earth). If we want to go two units of time into the future, the new data is then
f(f(D)) which we write as f 2(D) for brevity. The question of where the system
is 100 million units of time into the future amounts to calculating the value of
f100 000 000(D). We are usually not so much interested in calculating this as in
knowing whether f 100 000 000(D′) must be close to f 100 000 000(D) if D′ and D are
two sets of data that are close to each other. For stable systems, the answer is
yes, but for chaotic systems, the answer is typically no.

Lorenz advocated the examination of simple quadratic maps such as the lo-
gistic map g : R → R, g(x) = λx(1 − x) for some λ > 0, as good models for
more complicated chaotic systems such as the weather. Today we understand the
dynamics of the logistic map quite well, and we will discuss this topic at some
length in these notes.
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1.3 These notes

Almost all the proofs in these notes follow from the basic theory of continuous
and differentiable functions on R seen in first year calculus. We do occasionally
mention metric spaces but most of the time we use only the usual Euclidean
metric (distance) on R. We carry out some explorations in Maple, so you will
need access to Maple to fully appreciate and explore these parts.


