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ANALYTIC CAPACITY, HOLDER CONDITIONS, AND 7-SPIKES

BY
ANTHONY G. O’FARRELL(})

ABSTRACT. We consider the uniform algebra R(X), for compact X CC,
in relation to the condition Ip+a= 2?2(1""“"'1)"7 (An(x)\X) < 4 o, where
0speZ, 0<a<l, v is analytic capacity, and An(x) is the annulus
{zecC: -1 |z - x| < 27™}. We introduce the notion of T-c’spike for
7 >0, and show that Ip.,,a.: + o implies x is a p + a-spike.If X satisfies a
cone condition at x, and Ip+ <t % ?ve show that the pth derivatives of

the functions in R(X) satisfy a uniform Hélder condition at x for nontan-
gential approach. The structure of the set of non-r-spikes is examined and
the results are applied to rational approximation. A geometric question

is settled.

1. For a compact subset X of the Riemann sphere 3, R(X) denotes the uni-
form closure on X of the collection R O(X) of rational functions with poles off X.
R(X) is a Banach algebra with respect to the uniform norm || + ||, on X. Fora
positive integer p, R(X) is said to admit a pth order bounded point derivation at
a point x € X if the linear functional on R (X) defined by f f(p Xx) (=the pth
derivative of f at x) extends to a continuous linear functional on R(X), i.e., if

supl|f )| : f € R ((X), | Iy < 1} < +oo.

Hallstrom [4] characterised the points of X at which pth order bounded point

derivations exist in terms of analytic capacity, y. If UCC is a bounded open
set we define

Y(U) = supllf' ()| : £ € REENU), If I} oy < 13

and denote for x€ C, n€ Z, reR,

A x)={zeC:2 ™ 1<z —x| <277,

Ux,r)={zeC: |z — x| <r},
Bx,r) ={zeC: |z — x| <r}.
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Hallstrom’s theorem. Let X be a compact subset of C,x € X, 0< p € Z,
Then R(X) admits a pth order bounded point derivation at x if and only if

400
Y 2+liny(a n(x)\X) < +oca.

n=1

This is an extension of sorts of Mel'nikov’s theorem [2] characterising the
peak points for R(X). A point ¥ € X is said to be a peak point for R(X) if there
is a function f € R(X) such that f(x)=1 and |f(z)| <1 for every z € x\{x}.

Mel nikov’s theorem. Let X C C be compact, x € X. Then x is a peak point
for R(X) if and only if

Z 2"y(A n(x)\X) = + o0,

n=1

Thus the condition of Mel'nikov’s theorem corresponds to that of Hallstrom’s,
with p replaced by 0. For convenience let us say that R(X) admits a Oth order
bounded point derivation at x if x is a nonpeak point.

A. Browder asked what might be the significance for R(X) of Hallstrom's
condition for nonintegral p. That is, if 0 <X € R, what does the condition

+
8

1. X, x)=

™

2(A+1my(4 n(‘x)\‘X) = 400

]
—t

n

tell us about the function-theoretic properties of R(X) near x? The idea is that

this condition should be related to some kind of Ath derivative at x of the func-
tions in R(X).

2. For 0< p € Z, the pth order Gleason metric d” on X is defined by

W

db(x,y) = supllf (p)(x)—f(p)(v“ feR (x\ 71 Kgl},

whenever x, y € X. Note that d”(x, y) may be +c. This metric was studied in
[7], from the point of view of determining for a point x € dX whether there exists
a sequence of points y, — %, y, € X, y_# x, such that d®(y_, x) — 0. In parti-
cular, the following things are true [7, Corollary 1, Corollary 3] Suppose X satis-
fies a cone condition at x, i.e. there is a triangle in X U {x} with vertex at X,
and " denotes the midline of the triangle. Let 0< p € Z. Then, if R(X) admits
a pth order bounded point derivation at x, it follows that d®(y, x) — 0 as y — x,
y €. If R(X) admits a (p + 1)st order bounded point derivation at x, then there
is a constant k> 0 such that d®(y, x)< k|y - x|, whenever y € I'. Abbreviating
I) = In(X, x), and combining these facts with the theorems of Mel'nikov and

Hallstrom, we deduce that Ip < + o0 implies dP(y, x) —» 0 for y € ['yand I

P+1<+°°
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implies d®(y, x)< kly — x| for y € I'y so a reasonable guess is that Ip+ < 4o

a
should imply a condition d%(y, x) < kly — x|%.

O
Theorem 1. Suppose X C C is compact, x € X, X satisfies a cone condition
o]
at x, I is the midline of a sector C with vertex x which lies in X U {x}, 0< P€ Z,
0<a <1, and Ip+a< +00o, Then there is a constant k> 0 such that

@ Py, x) < kly - x|*

whenever y € I,

Proof. We may suppose x = 0, I'=[-1, 0], C={z € C: |2| <1, |arg(m - 2)| <
a} for some a > 0. Observe that it suffices to produce a k such that (1) holds for
y € [-%, 0], for given such a k, (1) then holds with k replaced by

max{k, supld?(y, x)|y = x|7%: - 1<y < - U}l

Fix y € [— l/2, 0]’f€ RO(X)'

Figure 1

There exists a positive integer N such that f is analytic on B = B(0, 2~ N~ 1),

Hence
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[P0) - (P =L § N -y -y 04 D)a;

Figure 2 Figure 3

N
p! p! .
o X $ap, [N 57 G, [N e

where D = An(O)\ C, and in the integral the orientation of aDn is that which
leaves D on the right.

Select g €Z, ¢ >1 suchthaty € Aq(O), There is a constant 7 > 0 such
that | - x| < 7| - y| for all ¢ ¢ C (and r may be chosen independent of y €

[ %, OD. Hence, if g+2<n<N, (€D _,then
(e -y)2P _ (YL -xV -y

m=0 "m

H}\ = (é- x)p+1 (L:— y)p+l

<oyl 3 (O)g - =Im=P= g -y~
Shk-yl 2( )6-= y
m=0

4
a b —p=19pl=a -a
<k-y1* T (C)K-xmrmi2t =t -yl

\m/

"1
71

m;O
(since ly —x|< 2|~y
a i P aA~l~-a 1
< lx - m+ - e l=b—x-
<k -y|* T (C)mea2t =t I -#]
m=0
< e -y|%*Q +r)p21'a2(p+a+1)".
f1<n<g-2,{€D,, then
o~ (? 1 1 2 o
<ol 5 (2) - #172=1E =517 e =51 5 ()melg - 62
m=0 m=0 m
< Jx - y|r(1+ @)P2@ 427 < | — 5| %(1 4 )20+ DI,

Ifnrn=qg-1,9,0r gq+1,{€D_,then
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[t < | -yl Z( )\é x|m -y T < x — ) Z(P) M4l +2)(g+2)

< |x —y|%(1 + )P 4p+22(0 e+ n < |y _ 5| %(1 4 )PP +29(p +a+1)n_

Thus, taking A to be the largest of the numbers 7 “a + 1')"2l -@ 8“27(1 + r)" we
1
have ‘{ ”SA.lx—' | 2(P+a+ )fl

Mel'nikov integral estimate [5], [9], [2] to the (pairwise similar) regions D, there

wherever 1 <n< N, { € D . Now, applying the
is a constant L > 0 such that

Jap, 80| < LYgllp v N D)

where g € R(Dn\ U), n=1,2,3,~++, Thus

| /(p )(y) - /(p)(x)|
N
<5 >: 1A+ L - b — ] 2@ 4+ Dm0 \) + & ] 1x -y 27041

+00

5_2?1% L X i <°‘\X’+°2"““§l\, hxhe - ¥1%.

Thus (1) holds with

K

+o00
% gx LL Y 2@eDny(4 (O\X) + 222 +°~§,

n=1

In plain language the conclusion of Theorem 1 is that for nontangential
approach to x from X, the pth derivatives of the functions in R(X) satisfy a
uniform Hélder condition: |/®2(x) - /2| < kllfll|% = y|*, where  is indepen-
dent of f and y.

3. Wilken [11] observed that R(X) admits a pth order bounded point deriva-
tion at x (b > 1) if and only if x bas a representing measure p on R(X) such that
P (x) < + 0, (Recall that a complex Radon measure p represents x on R(x) if
[{du = f(x) whenever f € R(X); and for 0< 8 € R the potential of order B, uB, of
p is the function defined by p’B(Z) = [d|p|€)/|¢ - zI'B for z € C; here |u| denotes
the total variation measure of 1.) This provides us with a second natural way of
interpolating between p and p + 1. In these terms we obtain a result in the oppo-
site direction to Theorem 1, but in a more general setting.

Theorem 2. Suppose X C C is compact, x € X, 0< p€ Z, 0<a <1, and

a . .
Ip+a= +oo, Then pP+%(x) =+ oo whenever u is a representing measure for x on

R(X).
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Proof. For convenience, suppose diamX < }4. There are two cases to
consider.

Case 1°. lim sup,_ 2(P+2+ 1)”y(An(:c)\X) = 0, so that, for some integer
N, all the terms beyond the N th are bounded by 1. Fix Ny<Ne Z and choose
M> N, M€ Z such that

M
<y o +a+1)"y(A n(x)\X) <2,
n =N

For each n € Z with N< n< M choose f, € R(X U (E\A)) such that |, |l5 <1,
[ (=)= 0, f!()> 4y(A_(x)\X). Form gy(z) = |lz-x|*(z—x)?+! b Nz(p*a“)"f,,(z)-

Then a familiar type of argument (cf. [2, p. _206]) shows that the sequence {g N}T
is uniformly bounded on any bounded set. Defining by (z) = |z-x|"%z-x)g Nz
we see that {h\}7" is bounded on bounded sets, and since by is analytic on
S\ B(x, 2~ -N) we deduce that a subsequence (again denoted {5 }) converges
pointwise on C\{x} to a function » which is analytic on C\{xi Since b is
bounded near x, b is entire. Letting kN(z) = (z-x)"P~ 2 N(z), we see that

k' (oo) = lim (z - %)k \(2) = Z 2(9"’“*1)"/'(@)

Z—00
n=N

+a

ifes in {1, 22*%}for each N, hence by passing to a second subsequence we have

N(oo) — B for some B € [1, 2°+%]. Thus Iimzqw(Z—x)'—p- Ih(z) = B hence
b(z) = B(z-x)?*! for z € C, hence g N (%) tends pointwise boundedly on bounded
subsets of C to Blz~x|*(z-x)P.

Suppose p is a representing measure for x on R(X) with p?+%(x)< + o, Then
|z-x|=%(z~x)"Pp is a finite measure and, setting Iy(z) = |z—-x|"%p\(2), I is
analytic near x, [y € R(X),

(»)
=106 =pt [ A dua) =1 | P xla(z_x)pdp.(z)

— ! [Bduz) = B p.

This is a contradiction.
Case 2°. lim sup, _ , o, 2P+**D™(4 _(x)\X)>25 > 0. Let {N}} be a
sequence of integers such that

2(p +a+1)NiY(AN,~(x)\X) > 2§,

and for each i choose /. € R(X U (E\AN.» such that ||f |z <1, f(=)=0
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~(p4+as N, (p+a4+ N,
/;(oo)=52 M !, Then, defining gi(z)= |z—xla(z—x)p*12 * ‘/i(z),

the argument of Case 1° goes through with these new gi’s, and again we arrive

at a contradiction.

4. Let us say that x is a 7-spike for R(X) if pr(x) = + oo whenever y represents
x on R(X). A peak point is a r-spike for every 7 > 0,

Corollary 1. Suppose X satisfies a cone condition at x, 1" is a straight line
in X U {x} which is not tangential to 90X atx, 0< p €L, 0<a <1, and x is not
a (p + a)spike for R(X). Then there is a constant k> 0 such that dl(x, y) <
Klx-y|* fory €T,

Proof. Combine Theorem 1 and Theorem 2. -

5. Next, we examine the structure of the set of r-spikes. The case a =0
of the following lemma is due to Browder [1, p. 1771

Lemma. Suppose p is a Radon measure with no mass at x, 0< b € R, and

E%={y € C: |x-y|’ +a‘;1+a(y)< bl. Then E* bas full area density at x, for

osa(l.

Proof. For r> 0 let v = £2\(B(x, r)\E%) (= area measure restricted to the
complement of E ®). Then by the definition of E* and Fubini’s theorem,

£2(B(x, NEMb = |v ||b < flx —ylt*eptte(y) dv (y) = ar? fGr(z) d|p|(2),

where

y| 1+*

_ 1 (lx-
Gr(z) - rl f ‘z _ }'| l1+a dvr(y)'

It is easy to see that G (z) tends pointwise boundedly to zero on C\{x}, hence
limr__o[fz(B(x, r)\ Ea)/nrz] = 0.

We note in passing that by applying the technique of [8, Lemma 2] 2 much
stronger result may be obtained. Let CP denote the capacity of order B: if
ECC, 0<Be€R,then chAE) = supt|(C)|: v is a Radon measure with support
in E, v’B_<_ 1}. Then, if p, x, b, E are as in the lemma, it follows that

400

3" 2(14nC 149 (4 ()\ED) < +eo.

n=1

In particular, for 8 > 1 + a, the B-dimensional density at x of B-dimensional
Hausdorff content mP (cf. [8]), restricted to the complement of E%, is zero.

Corollary 2. Suppose x is not a peak point for R(X), and 0<a <1. Then
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the set {y € X:y is not an a.-spike} bhas full area density at x.

Proof. There is a representing measure  for x with no mass at x [2, p. 54,
11.3]. Applying the lemma with 5 =1 and @ = 0, a respectively we deduce that
E® E®, and hence E° N E%, have full area density at x. Set v = (z—x)i. Then,
for y € Eo, I;(y) £ 0and 0= ;(y)" 1(z-—y)"lu = ;(y)'l(z-x)(z—y)"lp represents
y on R(X) [1, p. 176). For y € E® N E®, pl*%(y)< + o0, hence

o) = oI~ T“‘W‘“ dl(2) <[P 7" - diam X - p1*(y) < oo,

so E®N E® consists entirely of non-o-spikes.

6. This enables us to strengthen Bishop’s criterion [2, p. 54] for R(X) =
C(X) (= the space of all continuous functions on X). Bishop showed that if 2
almost all points of X are peak points for R(X), then R(X)= C(X).

Theorem 3. Let X C C be compact. Then R(X)= C(X) if for 2 almost
every x € X there is a, 0<a <1, and x is an a-spike.

Proof. By Corollary 2, every point of X is a peak point for R(X), hence by
Bishop’s theorem, R(X) = C(X).

A direct proof is also available: if v is an annihilating measure for R(X),
then V”a(’y‘)< +oo for £2 almost all y; if ! *2(y) < + o0 and I:Cy);é 0, then, con-
structing o as in the proof of Corollary 2, we see that y is not an a-spike for
R(X), hence D(y)= 0 for £ almost all y, hence v = 0 [2, p. 46, 8.2].

Corollary 3. R(X) = C(X) if for £ almost every x € X there isa., 0< a < 1,
with 1,(X, x) = + o,
Proof. Theorem 2 + Theorem 3.

Corollary 4. Suppose for £2 almost every x € X there exists a, 0< o < 1, and

> WU(x, H\X) S0,

lim su
rl+a

—0
Then R(X)= C(X).

This last fact was previously known; in fact it is known that @ may be re-
placed by 1 [2, p. 207). However, that result depends on the instability of ana-
lytic capacity, a very deep theorem. It is not possible to replace @ by 1 in
Corollary 3, for Wermer [10] has shown that there exist compact sets X such that
R(X) admits no bounded point derivations (hence, by Hallstrom, I, (X, x) = + o
for all x € X), yet R(X) £ C(X).
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To prove Corollary 4 note that the argument of Case 2° of the proof of Theo-
rem 2 shows that the lim sup condition implies x is an a-spike.

Fix X C C, compact, and set D" =f{xeX: I, x)< +oo}, In [6] it was noted
that D never contains isolated points, while for 7 > 1, D" may consist of a
single point. We are now in a position to complete the picture.

Corollary 5. If 0<r <1, then D" bas full area density at each of its points.

Proof. Each point x of D" belongs to DY, hence is a nonpeak point, and by
Corollary 2 the set of non-r-spikes has full area density at x. By Theorem 2
every non-T-spike is in D'.

When Gleason first introduced parts [3] he expressed the hope that there
might be bounded (first order) point derivations at most points of a nontrivial
part. While this hope was not borne out by the facts, the foregoing discussion
shows that at most points of a part of R(X) the functions in R(X) just barely
miss being differentiable, in the sense that £2 almost all points of a part are
not a-spikes for any a in (0, 1).

We should mention that there are examples of points which are a-spikes but
not peak points, so that the theory is not vacuous. For instance, consider a
Zalcman set, a compact set X obtained by deleting from the closed unit disc a
sequence of open balls B of radius r n? with B, CA (0), n=1,2,3,-++, Since

AAW 222 alllpas™ S Saa aw -

R(X) if and only 1f 2 "r =+oo. By Theorem2, if 0<a <1, then 0 is an
a-spike for R(X) provxded En:'l ."1(1"“""’)”7'z =+o0, Choose B€(l,1+a)r =

, 2=0+A% Then 0is an a-spike but not a peak point. Incidentally, for a Zalce
man set the converse to Theorem 2 is true: O is a r-spike if and only if I = +o0o,

-y(A (O)\ X)= 1/(R )= Mpl 'nikov’s flnngrem |mhlme that 0 is a peak point for
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