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SYNOPSIS

Let X be the boundary of a compact set which does not separate the plane, C. Let ® and ¥ be homeo-
morphisms of C to C with opposite orientations. Then every continuous complex-valued function
on X is the uniform limit on X of sums p(®)+q(¥), where p and g are analytic polynomials.

1. For a compact subset X of the complex plane C, C (X) denotes the uniform
algebra of all continuous complex-valued functions on X. If 4= C (X), then [4]y
denotes the closure of 4 in the uniform norm of C (X). If £}, f5, ..., f, € C (X)), then
P(fi, f3> ... [,) denotes the algebra of all polynomials in f;, f,, ..., f; with complex
coefficients. The following theorem of Browder and Wermer appears in [1].

THEOREM. Let Z and ¥ denote, respectively, the identity map of the unit circle ScC,
and a direction-reversing homeomorphism of S to itself. Then

[P(Z) +P(T)]s = C(S)-

This result fits into a circle of ideas concerned with removing the non-topological
assumption of closure under complex conjugation from the complex Stone-
Weierstrass Theorem and related results [3]. In this paper we exploit the Browder-
Wermer Theorem and some abstract technigues to obtain results in which topological
conditions imply approximation theorems.

Our main theorem is the following.

THEOREM. Let X be the boundary, 0Y, of a compact set Y with connected complement
in C. Let ® and ¥ be homeomorphisms of C to C with degree ® = —degree ¥ = 1.
Then

[P(®@)+P(¥)]x = C(X).

Proof. We may assume that ® = Z, and we do.

Let 4 be a measure supported on X which annihilates P (Z)+P (¥). Then ¥,u
annihilates P (Z) and is supported on ¥ (X) (recall that ¥,u is the measure defined
by § fd¥su = § fe Wdp). Let {U,;} be the family of components of the interior of Y,
and for each i, fix a point x; € U;. By the decomposition lemma for orthogonal
measures [4, §5],

b=Zu,
\P#” = 2’11‘9

where for each i, ; is supported on 0U,, 4, is supported on ¢¥ (U,), and both y; and
A; annihilate P (Z). Also y; is absolutely continuous with respect to the harmonic
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measure for x; on 0U,, and 1, is absolutely continuous with respect to the harmonic
measure for ¥ (x;) on 0¥ (U). Let v; = ¥, 11, so that

u=2xv,.

By Fatou’s theorem, the harmonic measure for U, is supported on the set of points
of oU, which are accessible from U}, hence y; and v; are supported on this set. Also,
p; and v, contain no point masses, since no harmonic measure contains point masses.
If i # j, then 0U;n0U; contains at most one point which is accessible from both
U; and Uj, since Y has connected complement. Hence

p(0U;noU;) = v(0U;noU;) = 0.

Let x; denote the characteristic function of 0U;. Then yu; = y;v; = 0 whenever
i # J, hence for each i,
B = Xl = 3 Xibdy = Kibh
J

= Z XiVi = XiVi = V.
J

Now fix i, and let ¢ and Y be conformal maps of the unit disc D to U; and ¥ (U)),
respectively, such that ¢(0) = x; and ¢ (0) = ¥ (x;). By the decomposition lemma
u; = ho,where ¢ is the harmonic measure on dU; for x; and /4 belongs to the abstract
Hardy space Hl(s), that is & belongs to the closure of P (Z) in L'(¢) and § hdo = 0.
The map ¢ has an extension as a measurable one-to-one map of a set of full df
measure on S on to a set of full harmonic measure on dU,, with ¢, (d6/2x) = 0.
Choose polynomials p, so that p,—A in L' (¢) and § p,do = 0. Then p,o ¢—ho ¢ in
L' (d6)and p,- ¢ (0) = 0. Hence o = ¢; 'y, annihilates P(Z). Similarly, § = y; "¥,u,
annihilates P (Z). Consider the map ¥, = ¢y ~! o W o ¢, which maps D on to itself.
Since ¥ carries prime ends (cf. [2]) on @U; onto prime ends on &¥ (U)), it is clear
that ¥, extends to a 1—1, onto, direction-reversing, and hence bicontinuous, map
of S to itself. Furthermore,

B =y "W = Yy ' Wadyo = ¥ yu0,

so that « annihilates P(Z)+P (¥;). By the Browder-Wermer Theorem, a« = 0,
hence u; = 0.
Since this is true for each i, we conclude that ¢ = 0, so that P(Z)+P (¥) is dense.

Comment. The classical Walsh-Lebesgue Theorem [4], states that if X is the
boundary of a compact set with connected complement, then the harmonic poly-
nomials are dense in all the continuous functions on X. This assertion is just

[P(Z)+P(2)]x = C(X)

in our notation, so that our theorem is a generalisation.
Before turning to the applications we pause and note some equivalents of the
hypothesis.

PROPOSITION. Let X be a compact subset of C and let % be the family of bounded
components of C~ X. The following three conditions are equivalent.

(1) XnU = & whenever T is a subset of X which separates C and U is a bounded
component of C~T;
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Q) X =0 (Xu (V));

(3) X = 8Y for some compact set Y with connected complement.

Proof. (1)=(2). Suppose (1) holds, and let ¥ = XU (U%). Then C~Y is the
unbounded component of C~X, hence Y X. Fix xe X. Then x¢€ clos (C~Y)
for otherwise x lies in a bounded component of 8 (C~ Y)< X and (1) is contradicted.
Hence x e clos (C~ Y)nXcclos (C~ Y)n clos ¥ = ¢Y. Thus X<0Y and (2) holds.

(2)=(3) is trivial.

(3)=(1). If X = 8¥, where C~ Y is connected, and if T and U are as in (1), then
C~ Y is contained in the unbounded component of C~T, so C~ Y does not meet
U. Thus Uc Y, so UnX is empty.

For brevity, let 2 denote the class of compact sets X for which the equivalent
conditions (1)~(3) of the proposition hold.

2. We draw a corollary from the first section of the proof of the theorem. It enables
us to patch together sets for which we know

[P(®)+P(¥)]x = C(X)
to get others.

COROLLARY 1. Let Y C be compact, C~ Y be connected, ® and ¥ be 1—1 maps
in C(Y), and let {U;} be the family of components of the interior of Y. Suppose that

[P(®) +P(¥)]ov, = C(OU)
for each i. Then
[P(®)+P(¥)]oy = C(OY).

The following classical theorem provides additional input for Corollary 1. It was
brought to our attention by B. Cole.

THEOREM. Let ® be a singular homeomorphism of S to S. Then

[P(Z) +P(®)]s = C(S)-

Proof. Let u annihilate P (Z)+ P (®). Then, by the F. and M. Riesz Theorem, p
and ®,u are absolutely continuous with respect to linear measure on S. Hence
u=0.

More generally, we say a homeomorphism @ is singular on the boundary of the
connected open set U if @ carries a set of full harmonic measure on dU to a set of
zero harmonic measure on 6@ (U). By imitating the technique of the main theorem
one can show the following.

COROLLARY 2. Let X € A, and let ® be a homeomorphism of C to C which is singular
on the boundary of each bounded component of C~ X. Then

[P(Z) +P(@)]x = C(X).
Clearly, one can ring the changes here, combining singular maps with maps of
negative degree in various combinations.
The remaining application is the invention of K. Preskenis. The author wishes to
thank him for several conversations in which he set forth his ideas. These results
concern sets with possibly non-empty interior.
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COROLLARY 3. Suppose F is a real-valued continuous function on the compact set
X < C such that each level set of F is an element of A . Let ® and ¥ be homeomorphisms
of C to C such that degree ® = —degree Y. Then

[P(®, F)+P(¥, F)]x = C(X).

Remark. One may replace the assumption that ® and ¥ have opposite degree by
a singularity assumption on ¥ o ®; or by a mixture of the two.

This result may be deduced from our theorem by direct methods. A more elegant
approach uses the following theorem of de Branges (see [3, Lemma 2.3]; this is a
slight generalisation of that lemma, but the same proof works).

THEOREM. Let X be a compact Hausdorff space, let A be an algebra of continuous
functions on X which contains the constants, and let B be a subspace of C (X) which
is an A-module. Suppose A contains a real-valued function F. Then the extreme
annihilating measures of B in the unit ball of C (X)* are supported on the level sets
of F.

Proof of Corollary 3. Let p be an extreme annihilating measure of P (®, F)+P (¥, F)
in the ball of C (X)*. Then by de Branges’ Theorem y sits on some contour of F,
and by the main theorem, u = 0. Hence the Krein-Milman Theorem implies there
are no annihilators except the zero measure.

We obtain a corollary resembling a theorem of Mergelyan [3, Theorem 2.1].

CoROLLARY 4. If W is a homeomorphism of C to C of degree—1 and [P (Z, V)]
contains a real-valued function F whose level sets are elements of A", then

LP(Z, ¥) }x = C(X). ™

It is an open question whether the assumption that ¥ is an orientation-reversing

homeomorphism of C to C is sufficient by itself to guarantee the equality (*) [cf. 3].

COROLLARY 5. Let @, ¥ and A be homeomorphisms of C to C with degree ® = —degree
Y, and let o be a positive real number. Then for any compact set X < C we have

[P(@, [A1D+P(Y, | A19]x = C(X).

Proof. The contours of | A |* are closed Jordan curves, so they are elements of ¢,
and Corollary 3 applies.
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