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DENSITY OF PARTS OF ALGEBRAS ON THE PLANE
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ANTHONY G. O'FARRELL(1)

ABSTRACT. We study the Gleason parts of a uniform algebra 4 on a com-
pact subset of the plane, where it is assumed that for each point x € C the
functions in 4 which are analytic in a neighborhood of x are uniformly dense
in A. We prove that a part neighborhood N of a nonpeak point x for 4 satis-

fies a density condition of Wiener type at x: X ;: Z"C(An(x)\N)< + o0, and
if A admits a pth order bounded point derivation at x, then N satisfies a
stronger density condition: X ::’1 2(p+1)"C(An(x)\N) < +o00, Here C is New-
tonian capacity and An(x) isf{z eC: Z—n—ls ‘z-—x‘ <27, These results

strengthen and extend Browder’s metric density theorem. The relation with

. - . =]
potential theory is examined, and analogous results for the algebra H (U)
are obtained as corollaries,

1~

Let X C C be compact. Browder’s metric density theorem [3, p. 177] states
that any part neighborbood (with respect to R(X)) of a nonpeak point x for R(X)
has full area density at x. We extend this theorem in three ways, We replace
R(X) by any of a large class of algebras (those satisfying conditions (1)—(4) of
$1); we strengthen the conclusion, using Newtonian capacity (Theorem 1); and
we show that, by strengthening the hypothesis to allow the existence of a bounded
point derivation at x, the conclusion may be further improved (Theorem 2). One
consequence (Corollary 2(d)) is that if a pth order bounded point derivation exists
at x, then plane area fz, restricted to the complement of any given part neighbor-
hood of x, has zero (2p + 2)-dimensional density at x.
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1. Consider 2 compact set X C C and an algebra A of continuous complex-
valued functions defined on C such that

(1) A contains the constants;

(2) A separates points on X;

(3) the restriction, B, of A to X is closed with respect to || - ||, the uniform
norm on X;

(4) for each x € C the set A_ = A N {f: [ is analytic on a neighborhood of x}
is dense in A with respect to || - “X

The first three conditions state that B is a function algebra on X (3], while
the fourth first occurred in the work of Arens [1] on maximal ideals. Many inter-
esting spaces have these properties.

The Gleason metric of A on C is defined by

dlx, y) = supllfl) = f)]: fe 4, Iflg < 1

whenever x, y € C. A Gleason part of A is an equivalence class under the relation
x ny = d(x,y)< 2. Parts are discussed in [2], [3], [6], [8], .[9], f11], [12], (13},
[15], 18], [25], [26], [29]. A point x € X is a peak point for B if there is a func-
tion in B whose modulus takes its maximum value at x, and only at x. Peak points
form trivial one-point parts [9). This paper is about the structure of nontrivial
parts.

Ve need some notation.

For x € Cand 0<a € R, set P(x, a)=1{y € C: d(x, y)< a}, G(x, a)=1{yeC:
d(x,y)< a}. Fora (complex Radon [7, p. 62]) measure p on C the Cauchy trans-
form i1 and the Newtonian potential i are the L11°°(C, £?) functions defined by

pe-f 2, pw - [ e

for z € C. Here |p| denotes the total variation measure of . The Newtonian
capacity of aset ECC is

C(E) = supi|pll: u is a measure, spt p CE, ¥ < 1},
where sptp refers to the compact support of p, and |[pu|l is its total variation norm,

ice. Jlpll = |¢|(C). For x€C, n€Z and r € R we set

Afx)=1zeC: 2771 <|z- 4 <277, Blx, N=izeC:|z- x| <rl

2. The main results of this paper are as follows.

Theorem 1. Suppose x € X is not a peak point for B, and a > 0. Then
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) .’ M, (B(x, MP(x, ) _
® 7—1-»!3 P +1E(r) -

whenever b, k are as in Corollary 1(b),

. MAB(x, D\Plx, a)) _
©) rlirg ) = 0 whenever B> 1,

All these results are new, with the exception of Corollary 1(d), which is
Browder’s metric density theorem, in case 4 = R(X). Another case of 1(d) was
noted by Gamelin and Garnett [11]. The results are somewhat analogous to theo-
rems of [16], [28], [20], [21, Theorem 51, [5], [24], although quite independent of
all of these.

3. Our two main tools are a lemma of Browder’s and the Wiener series
machinery, as perfected by Mel nikov and Curtis. So our methods are a blend of
the dual space methods of the disciples of F. Riesz and the constructive tech-
niques of the Russian school.

If L is a linear functional on A, a representing measure for L is a (complex!)
measure g such that Lf = [fdy whenever f € A. A representing measure for a point
y € X is a representing measure for the functional f = f(y). By the Hahn-Banach
and Riesz representation theorems every continuous linear functional on the
Banach space B has at least one representing measure supported on X. A point
y € X is a nonpeak point for B if and only if y has a representing measure with
no mass at y 19, p. 541.

This is proved in case A = R(X) in [3, p. 176]. The same proof works for
general A satisfying conditions (1)-(4) of $1, a fact which was known to Browder.

Lemma 2. Let x € C, p be @ measure with no mass at x, 8 >0, E =
iy € C: lx—y|Z () > 8. Then
+00

> Z"C(An(x) N E) < 400,

n=1

Proof. Abbreviate 4 (x)NE =E . Letx,p,6 and E be as in the hypothe-
ses, and suppose 2’::1 Z”C(En) = + 00, We seek a contradiction.
Fix 1< Ne€Z. Since C(E )< C(B(x,27"))< 27" we may choose M€ Z,
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M > N such that 2 < 2 n2"C(E )< 4. Foreach n € Z, with N<n< M, choose
a positive measure V_ Wlth support in E , such that v <1and 1/éC(E )<

“V | < C(E,), and set ay = EM N2V, Then ay isa posmve measure with sup-

port in E N B(x, 2Ny, and 1< “aNll < 4,

From the definition of E and Fubini’s theorem we deduce
5< [ly - xl¥0) day() = [ Gy(dlul (=),

where

Gpl2) = f|y~zl day(y).

We claim there is a sequence {N }°° C Z such that Gy _ tends pointwise boundedly

to some positive multiple of Xix}? the charactenstxc ‘function of ix}
Fix z £ x. Then, provided N is large enough to ensure that 27" < ¥|z-x|,
we have 1/|z—-y| < 2/|z-x| for y € B(x, 2~ Ny, hence

2! Mayl _ p3-N

—0 as N— +oo.
|z - x| |z—x|

1G ()] < —2— fly ~ x| doy(y) <

z-x

Also Gp(x)= IIaNH, so 1 < G, (x)< 4 for every N, hence there is a sequence {Ni!
and a number f3 € {1, 4] such that G N, tends pointwise to ﬁx{x;

Next, |GN(x)l < 4; also, each GN is the potential of measure with support
inside B(x, 27 ), so it suffices to show that G, is bounded on B(x, 2 2=, Ac.
cordingly, fix z € C with 0< [z—x| < }4. Choose p such that z € A (x). For
nkp-1,porp+1,and y € A (x) we have |y—z|> 2772, ly-x| <27,

n x| n
2f|,_l!dv(y)<4 2w |
For p-1<2<p+1, we have

2"f |z—y| dv( )<J.'-;—_

Hence

NG °"f"’ dv<y>—§_ > +X

p-1 p+2
p-2 M
<4 Z 2" lv | +3+4 3 2°|v, |I<3+4§:2"|iv I < 19.
b+2

So we have shown that G tends pointwise boundedly to Bxix}. Hence
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0<6< fGN(z)dlpl(z) — f.BX{x}d‘l“ = Bluix}| = 0,

a contradiction.
Proof of Theorem 1. Suppose x € X is not a peak point for B and a > 0,
Choose a representing measure for x with no mass at x, and set & =
a@+1+|u))"1, E=1{y € C: |[x—y|[¥(y)>8}. By Browder’s lemma, C\EC

P(x, a), and by Lemma 2 and the monotonicity of C,

+o0 +00
3 2°ClA (D\P(x, @) < 3 27ClA (x) NE) < +eo.
n=1 n=1

Lemma 3. Let r be any measure, 0< p€Z, 0<neR, x€C,

E=%y€C: |y-x1flél_i‘-y‘-‘3dlr|(z)_>_n§,

E = An(x) NE.
Then 3 2P+DC(E )< 4,
n= n

We omit the proof, since it follows the same lines as that of Lemma 2.
Proof of Theorem 2. Let x € X, p be a positive integer, and suppose B
admits a pth order bounded point derivation at x. Choose a representing measure
7 for the derivation. Then p = (z—x)Pr/p! represents x, hence by Browder’s

lemma, if @ >0, & = pla(@+ 1 + [|u]|)~?, then

_ —_ | P
C\P(x, @) C{yeC: |x - y|¥() > 8} ={ye C:|y - xlf-'—iz——f—l—l- d|7|(z) > &p!};
z=Y
and so. by Lemma 2 and the monotonicity of C
and so, by Lem 3 and the monotonicity of L,
+00
E Z(P"l)"C(An(x)\\P(x, a)) < 400,
n=1

Proof of Corollary 1(a). The conclusion of Theorem 1 implies the conclusion

of the corollary, as follows. Let us abbreviate P(x, a) = P, and assume

C(B(i’ A\P) k> 0.

lim su
r—0

Choose a sequence of positive numbers r , tending to 0, such that
-N =1
C(B(x, rn)\ P)> kr ,and for each z choose an integer N such that 2 " <

-N
r,<2 ". Then N, — +oas n — +,and
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+o0 +o0
> mca NP 2 2 T 4 (I\P) > 2Vnc(B(, 27V )\P)
m=N, m=N,

> C(B(x, rn)\P)/2rn > Yk,

hence E;ZZ’"C (Am(x)\\ P) = + 00, Here we used the fact that C is subadditive
171

Proof of Corollary 1(b). If E CC, b is a measure function, [,dh(t)/t < + oo,
and k() = [dh(t¥t, then C(E)> M, (EYk(diam E) (for a proof see [14]) and hence
the assertion of 1I(b) follows from 1(a).

Proof of Corollary 1(c). If 8>1, and E C C, then C(E)> k MB(E)!/B,
where k depends only on 8 [14].

Proof of Corollary 1{d). If E C C, then C(E)> (4n)” 1/2532(&‘)1/2. This is
proved, in essence, in [3', p. 150]. Thus whenever

lim C(B(x, P\P(x, ) _

r—0 r

0,

it follows that
- L2p(x. rz)\P(x. a)) _ g

r—0 r

b

N
-

Corollary 2 follows from Theorem 2 in the same way as Corollary 1 follows

from Theorem 1. We omit the details.

4. Example 1. Consider a Zalcman L-set [30] X, a compact set obtained by
deleting from the closed unit disc a sequence of disjoint open balls with centers
on (0, 1), accumulating only at 0. If the balls are chosen sparse enough, then 0
is not a peak point for R(X)=A(X) [30]. More precisely, if their centers are
at a,, 4;, @3, and their radii are r, r,, 73s***, 1espectively, then 0 is not a
peak point provided E:: r_/a_ < +oo,

Assume 0 is not a peak point, and fix 0< @ < 2, and apply Theorem 1 with
A = R(X). Then P(0, @) is roughly heart-shaped (its complement is not con-
nected), and P(0, a) N3X = {0}, so since the Gleason metric is continuous on b
[23], it follows that the set U = G(0, a)\10} is open. Also G(0, a) D P(0, a/2),
so by Theorem 1, EZZIZ"C(A'Z(O)\ U)< +. Now E = C\U is closed and has a
fragmented “'spike’’ at 0. Look at the plane as embedded in R? and form an open
set VeR3 by deleting the “‘flat spike’’ E from the open unit ball in R3. Then,
denoting AZ(O) ={x € R>;: 27771 < |x| < 27"} we have EZZIZ"C(Ai(O)\ V)< +4oo,

Now this is just Wiener’s criterion [28] that 0 be a nonregular point for the
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Figure 1

solution of the Dirichlet problem in V, i.e. 0 is not a peak point for the space

D(V) of functions harmonic in V and continuous on V, and the Dirichlet problem
cannot be solved in V.
For general X, G(x, a)\{a} is not open, so this discussion does not apply.
Example 2. There is a connection between Lemma 2 and the fine topology
of potential theory [1 7. The fine topology on R3 is the smallest topology on
R3 in which all superharmonic functions are continuous R-valued functions. Let
us adopt the notation of Lemma 2, and think of the plane as embedded in R3.

The functions P (y) and |x—y|~! make sense for y € R?, and are superharmonic,
sothat N =iy €e R3: ()< 8|x—y|~1} is a fine-open set, and N is a fine neigh-
borhood of x if and only if f(x)< +o. A theorem on the fine topology {17, p.
220] states that if N is a fine neighborhood of x, then 2;:2"C(Az(x)\ N)< + o0,
Thus, if we add to the hypotheses of Lemma 2 the assumption f(x) < + e,

then the conclusion of the lemma follows from this theorem, for then R3\v >
C\V =E, and

+o0 +oo +o00
3 2°ClA (D NE)Y <Y, 2"ClA3x) NE) < T 2"CAX(D\V) < 4o,
n=1 n=1 n=1

However, if 'ﬁ'(x) < 400, then 7= (z—x)7 Ip is a Radon measure, and for
y€G,



DENSITY OF PARTS OF ALGEBRAS ON THE PLANE 411
ly - 2|2 = |y - x‘f — x| dlrl(z)
|z -

so Lemma 3 applies (with p = 1), and 2n=14”C(An(x) N E)< 400, Thus our
methods yield an even stronger result under the new hypothesis.

In terms of the algebra A this shows that the fine topology merely allows us
to deduce the conclusion of Theorem 1 under the bypothesis of Theorem 2 (with
p=1). In fact, as Wilken first observed, A admits a (first order) bounded point
derivation at x if and only if x has a representing measure p with f(x) < + oo,

Example 3. It may be asked whether Newtonian capacity C may be replaced
by analytic capacity y in Theorem 1 or Theorem 2. The answer is no. Fora
compact set KC C,

AUK) = supf|f'()|: [ is analytic off K, I/l ek < 13

Mel'nikov’s theorem [30] states that a point @ in a compact set Y CC is a peak
poiat for R(Y) if and only if . 2%(A x)\Y)<+e. If C could be replaced by
Y in the conclusion of Theorem 1, then the theorem would imply that a nonpeak
point for R(X) is a nonpeak point for R(P(x, a)). This cannot be so, for Gamelin
and Garnett [12] have constructed an example of a set X such that 0 is not a peak
point for R(X), but P(0,19~!) meets none of the circles {z € C: |zl =27%}, =
1,2,3,.-., hence P(0, 19~ 1) consists of a collection of closed disjoint bands
surroundmg 0, hence by Bishop’s 1/4 — 3/4 criterion [9], 0 is a peak point for
R(P(0, 197 .

Fix 1< p € Z. By use of Hallstrom’s capacity criterion for the existence of
a bounded point derivation [16], the Gamelin-Garnett example may be modified so
as to ensure that R(X) admits a pth order bounded point derivation at 0, while
P(0, 197 ') remains disconnected at 0, so that by Mel'nikov

+o0
> 244 (NP0, 197 1) = +oo,

rn=1

and a fortiori,

+00
> 2@ +Dn 4 (I\P(0, 197 1)) = +e.

n=1

Thus C cannot be replaced by y in Theorem 2. Similar reasoning shows that C
cannot be replaced by a, the continuous analytic capacity [9).

Example 4. Easy examples show that Corollary 1(a) is stronger than 1(b),
I(b) is stronger than I(c), etc., and similarly for Corollary 2.

We give an example which may provide some geometric *‘feel’’ for Theorem 1.
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Fix x € C, and take any séquence of nonnegative numbers 7 < 1/4 with
400

3 g =+ Let D C A_(x) be any open disc with radius Tn/Z" and let D =

$'"D . Then C(A_ ND)=C(D,)>r,27" ", s0 2.7 2"C(4, N D) > %Z 77 =

n=1rn
+0o, Hence if X is a compact set, and X is not a peak point for A4, then D meets
P(x, a) for every @ > 0, and in particular D contains nonpeak points.

If we choose 7_ = (3+7)" !, then D has zero area density at x. More than
that, limr_o[C(B(x, r) NDYrl= 0, as is easily seen, so the conclusion we have
drawn cannot be deduced from Corollary 1.

In case A admits a pth order bounded point derivation at x, we may modify
the construction of D by taking radius (D )=7_ /2% +1)", and still conclude that
D meets P(x, a).

5. By means of a trick due to Gamelin and Garnett, these results may be
extended to cover the algebra H™ (U), for a bounded open set U C C, a Banach
algebra in L*®-norm. Let M denote the space of multiplicative linear functionals
on H™(U) with its usual compact Hausdorff topology [19], and let mx denote the
fibre in N over a point x € U, with respect to the natural projection ¢ i+ &(z) of
M—U [12]. Ifxe U, then mx = 1¢x1 consists of just one point, but for x € dU,
mx may be very large. M may be regarded as an extension of U, and all the func-
tions of H™(U) as continuous functions on M. The part metric of H®W) on M is

defined by

I, ¥) = supl|fié) — fY): fe H=), ||y < 1}

whenever ¢, ¢ € ), and a part of H™(U) is an equivalence class under the relation
on M given by ¢ ~ Y = dp, )< 2. We set

(¢, @) = {z€ U: o, ¢,) < @}

for ¢ € Mand a > 0. II(, @) is the intersection with U of a part neighborhood.

A fibre mx is a peak fibre if there is a function f € H®(U) such that f=1on mx
and |f| <1 on Sﬂ\mx. Gamelin and Garnett [12] studied the conditions under
which mx is a peak fibre. They showed that, while any representing measure on
M for a point of a peak fibre ?ﬂx must have mass on mx, a nonpeak fibre mx always
contains 2 unique homomorphism, ¢_, distinguished by the property of having a
representing measure with no mass on fmx. They gave a capacity condition on the
behavior of U near x which is necessary and sufficient for Wx to be a peak fibre,
and in the course of the proof (p. 459) they showed that if mx is not a peak fibre
for H®(U), then there exists a compact set X C U U {x} such that x is not a peak
point for R(X). They also observed (pp. 457—458) that each function { € H(U)
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may be approximated pointwise on m\mx by a sequence of functions [ € H®),
each of which extends analytically to a neighborbood of x and satisfies “fn“U <
17|f},- This implies that, denoting by d the Gleason metric of the above R(X),
we have 9(@,, $,)< 17d(y, %), hence P(x, 17-1a)C (¢, a) Uix}. If we now
apply Theorem 1 we obtain a part density theorem for H®(U). This improves on

{12, 3.5L
Theorem 5. If fmx is not a peak fibre for H*(U), and a > 0, then

+o0
T 7i¢ (4,6, 9) <ree
n=1

In [23] the notion of a regular pth order bounded point derivation on H™(U)
at a point ¢ € M is introduced, and it is shown that such derivations exist only
at distinguished homomorphisms. By the methods of the proof of Theorem 5 of
that paper one may show that if H™(U) admits a regular pth order bounded point
derivation at ¢ then there is a compact set X C U U {x} such that R(X) admits
a pth order bounded point derivation at x. Hence Theorem 2 can be applied, and
the following theorem results.

Theorem 6. If H*(U) admits a pth order regular bounded point derivation at
¢.sand a> 0, then

‘oo
5 20+0c(4 (NS, @) <+

n:l
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