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EQUICONVERGENCE OF DERIVATIONS
A. G. O’FARRELL

This paper is a study of bounded point derivations on
the classical Banach algebras of analytic functions of a
complex variable. The results are positive in character.
The higher-order Gleason metrics d? of E(X) are introduced
and conditions are studied under which convergence takes
place with respect to these metrics. In particular, if R(X)
admits a pth-order bounded point derivation at a point x€dX
and X satisfies a cone condition at z, then d?(y, x) tends to
0 as vy tends to z along the midline of the cone. Similar
results hold for the other classical function algebras. In
the case of the algebra H*(U), for open U c C, the analogous
results hold only for regular derivations (a regular pth-order
derivation maps 2? to a nonzero complex number). The
points of the maximal ideal space of H=(U) at which regular
bounded pd_int derivations exist are characterized in terms
of analytic capacity, following Hallstrom.

1. Let x be a point of the plane C and A be a class of functions
analytic in a disc D centered at x, each function having modulus
bounded by 1. Then, as is clear from Cauchy’s integral formula,
the family {f'| f € A} is equicontinuous at z, and for every segquence
{z,} — x, the sequence {f'(x,)} converges to f'(z), uniformly on A, i.e.,
{f'(x.)} is equiconvergent to f'(x). More generally, for any integer
p=1, {f"(,)} is equiconvergent to [ (x).

Now, given a C-algebra A of continuous functions on a compact
set X C which are analytic on X, it is often possible to find points
on 0.X at which nonzero point derivations exist on A. A (first order)
potnt derivation at x € X on Ais a linear functional D: A — C such that

D(f9) = f(@)Dg + g(x)Df ,

whenever f, g€ A. This notion generalizes that of derivative at a
point. For points ye X ‘all point derivations are of the form
f— af'(y) for some complex constant « (independent of f) provided
A contains the polynomials. Suppose A contains the identity map 2z
and D is a mormalized point derivation at x on A4, i.e., Dz=1, A
natural question is:

Ql. When is there a sequence of points x,€ X, converging to x,
such that the sequence {f'(x,)} converges to Df for all fe A?

A bounded point derivation is a point derivation that is continuous
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with respect to the uniform norm on X. If A admits a bounded point
derivation D at a point # we may ask:

Q2. Can we find x,—x, ©, € X, such that f'(z,) is equiconvergent
to Df on A, = ANn{f]ifllx =17

We shall concern ourselves with Q2, which lends itself to treat-
ment by Banach algebra techniques.

2. We treat first the case 4 = R(X), the uniform closure on
X of R(X), the class of rational functions with poles off X. R(X)
is a function algebra on X [2, p. 2]. The Gleason metric d° on X, with
respect to R(X), is defined by

d'(x, y) = sup {| f(&) — fW) || € R(X), || ]lx = 1},

for #,ye X. Here || f ||z denotes the sup norm of F on X. The
properties of X with respect to this metric have been thoroughly
investigated. An account may be found in [2],[4]. If = and v
belong to the same component of X, then d@,y) <2 If z is a
peak point for RB(X), then d'(z, ¥) = 2 whenever y = . This prompted
the definition of Gleason part. A part P of the algebra R(X) is a
subset of X which forms an equivalence class under the relation
z~y{=>d"x, y) <2. The structure of parts ecan be very compli-
cated. Davie has shown that P may be disconnected, and the Swiss
cheese example shows that P may have no interior (cf. [4]). However,
a nontrivial part (a part which does not just consist of one peak
point) has full area density at each of its points, and in fact Browder
[2, p. 177] has shown that every Gleason ball {x € X | d’(x, a) < &} (¢ > 0)
about a nonpeak point ¢ has full area density at a.

In particular, a is not isolated in the part metric d°, and there
is a sequence of points z, € P\{a} which converges to a simultaneously
in the Euclidean and Gleason metrics. In plain language, as n— + o,
tz, — a|—0, and {f(x,)} is equiconvergent to f(a) for fe R(X)N
{fIIIfllz =21 = RB(X, 1).

For »p = 1 we define the pth order Gleason metric on X by

d*(z, y) = sup {| () — [P || f e B(X, 1)},
for x, ye X,

The first thing to note is that d’(z, y) may be + oo, so we are
using the word “metric” a little loosely. An ordinary metric may be
obtained from d® by composing it with the arctangent function, but
we would rather not do this. We extend d” to € x C by writing
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d*(x, y¥) = d°(y, ) = + o> whenever one of the elements «, y fails to be
in X.

For p = 0 we say that a (normalized) pth order bounded point
derivation on R(X) exists at a point x€ X if and only if the func-
tional f— f*(x) on R,(X) extends to a continuous linear functional
Dz on R(X), i.e., if and only if

') = sup{| (@) || f € R(X, D)} = || D2 ||

is finite. Suppose this bappens, and z, is a sequence of points of X
tending to z (in Euclidean norm). Then to say that f(x,) — Dif
equiconvergently on R(X,1) is the same thing as saying that d*(x,, x)—0.

Notice that the two definitions so far available for a normalized
first order bounded point derivation on R(X) agree.

For purposes of computation it is usually easier to work with the
function dg, defined by

a3z, y)=sup {| fPW) || f e RB(X, 1) and flz)=/f"(x)="--=f"(2)=0}.

3. The elementary properties of the functions d7, s*, d? are
summarized in the following theorem. Here, as usual, p is a non-
negative integer.

THEOREM 1. Let x,yeC. Then

(1) [s°(@) — s"(¥)| = d*(z, y) < s"(x) + s"(¥);
(2) d(x,9) = (p + D! — y|/(diam X)**
(8) for xe X,

SPH(LXJ) = lim dp(xy y) ;
v |2~y

(4) for each compact subset K of a component of X there is a
constant L > 0 such that

d*(x,y) < Llz—y],

for x,ye K, so d” ts continuous on X;

(5) s® is continuous on X;

(6) dix, y) < d’(z, y) = {1 + exp (diam X)} {supos.» 8" (@)}d5(, ¥);

(7) +f X, is a decreasing sequence of compact sets, each con-
tatning X in its interior, whose intersection is X, then s 1s’ and
d21d?, where s and di are respectively, the s*-function and the
d’-function associated with X,;
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(8) s” and d° are lower semi-continuous;

(9) if lz, —2]—0 and {s°(x,)} is a bounded sequence, then s"(x)
s finite;

10) if s"(w) < + oo for some w = x, then sy(x) = +oo if and
only if d¥(z, ¥) = + oo for every y = x;

(11) =z is an interior point of X if and only if

sup[ilog—s—"—(%—)]< + oo,
w2zl L7 n!

Proof.
(1) is clear.
(2): Take f(z) = (z — y)""*/(diam X)**'. Then f e Ry(X, 1), so

@, y) = | fP@) — "W).
(8) requires a lengthy but straightforward argument, using the
Cauchy integral formula.
(4) follows from (3), using compactness.
(5) follows from (1) and (4).
(6): For the second inequality, let f e R(X, 1), and form
P {v)
00 =0 - 5 LE -0
Then g(z) = g'() = --- = ¢"™(x) = 0, and

lolle 51+ 3219 (diam X)*
2, (diam X)) { v

< wiama4)

= {25 e ew)

= {1 + exp (diam X)}{ sup s”(x)} .

0svsp
(7) follows from the fact that each f e R,(X, 1) belongs to every
R(X,) from some point on.

(8): By (4), (5), and (7), s” and d” are increasing limits of con-

tinuous functions.
(9): Take X, | X as in (7). For each m, ve X, so by (5),

sh(x) < sup sh(x,)
nzl
< sup s"(x,) .
n=1
Thus, by (7),

s*(x) = lim s&(x) < sup s®(x,) < + o< .
m—roo nal
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(10): We may assume p > 0. If d°(x, y) = +o for every y = z,
then by (1),

s'(x) = d(x, w) — s"(w) = + oo .

This proves one direction.

If s’(x) = +co and d*(x, y) < +oo for some y, then assume p is
minimal. We have € X and so we may choose a sequence f, € B(X, 1)
such that

| fa(@) | — + oo,
while | fi#(x) — fP(y)| < M for all n, for some constant M. Form
9.(2) = (22 — & — Y)f(2) .
Then
g:7() = 2pf 7 (2) + (22 — x — Y) ()
Thus ‘
| g (x) — 9.7 (w) |
= [2pf (@) + (@ — YL@ — 20177 (@W) — (¥ — o)W |

zlz—yllfiP@)+ F2)]
—2p | FiF V@) — FE(Y) | — +oo as n— + oo .

(11): The point 2 is an interior point of x if and only if
s.(x) = M™n !

for some constant M > 0. (“Only if” is clear, and “if” is true be-
cause the inequality implies that every function in E(X, 1) is actually
analytic in a full disc centered at x. This forces xz € X.) (11) is just
a way of rewriting this.

4. For our purposes all measures will be finite complex Borel
regular measures with compact support in C. For v > 0, the potential
of order v of a measure £ is given by

oy — | &1l Q)
/‘(z)—sl—c—:—é—l;—,

where | 2] is the total variation measure of ¢. Wherever ¢'(z) < + o
we define the Cauchy transform of g by

a0 = [ 240

For every continuous linear functional I on R(X) there is a measure



544 A. G. OFARRELL

t, supported on X, which “represents L on R(X)”, i.e.,

| rau = Lf

for every fe R(X). This fact follows from the Hahn-Banach and
Riesz Representation theorems. Also, ¢ may be chosen to have its
support on 06X, since R(X) and R(X)|0X are isomorphic Banach
algebras. An annihilating measure for R(X) is a measure ¢ on X
such that

Sfd;zzo

for every fe R(X). We write # 1 R(X). The following easy fact
was first noted by Bishop, and plays a central role in our theory
(cf. [2, p. 171]).

LEmMA. If p L RX), p(y) < +, and [Hy) =0, then the
measure

11
gly) z—vy

represents “evaluation at y” on R(X), i.e.,

| rdu = 1)
for feR(X).

The case p = 0 of the following theorem is due to Browder [2,
p. 176].

THEOREM 2. Let p be a nonnegative integer. Suppose the measure
1 represents a bounded pth order point derivation on R(X) at x. Then
for every given a > 0 there is a corresponding b >0 such that
d*(x, y) < a whenever

(2) Sle -yl ww <b.

Proof. We proceed by induction on p: Suppose p is the least non-
negative integer for which the proposition fails. Let g represent
D; and a >0 be given. We may suppose ¢ <1. For =0,1, ---,
» — 1, BR(X) admits a bounded cth order point derivation at x, repre-
sented by

o
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_tHz— )"

#T p!

I

so there are numbers b, > 0 such that

41

ach and (3) Sl —yl|ey) <b
have its ”

Banach forces d°(z, y) < a/2. Now

pon X

) = (T2 =2 .
) = [EE )

= 7l (diam X)*™"u"(y) ,

so, setting ¢. = b, {SUpc.<, 7! (diam X)*~7} 7, and ¢ = inf <. ., ¢, we deduce

asy fact that 35 [z — y | *#"(y) < ¢ forces (3) for t=10,1, ..., p— L
r theory Let K =1 + exp (diam X),
T = 2{sup s*(x)}X .
then the rsrEe
Note that T = 2K, since s(x) = 1.

Choose b >0 to be smaller than each of the numbers ¢, 1/2,
p!l(diam X)*"* and a{2T(K, + || ¢£|])}"}, where K, > 0 is a constant,
depending only on p, which will be described later.

Let (2) hold. We will show that d°(z, ¥) < a. We claim it
suffices to show
(4) di(y, =) < a/T .

For, assuming (4), we have by Theorem 1(6), (1),
d’(x, y) < K{sup s*(y)}di(y, =)
wder [2, omvEp
= K{sup s"(x) + sup d*(z, ¥)}di(y, x) .
0svsp 0svEDp
) MEASUTE Thus, if d’(z, ¥) = a, then d*(z, ¥) = SUD..,<» &*(2, ¥), since (3) holds
x. Then f0r7=0,1,°"’p—1, 50
such that 1
ar(e, y{1 — Kdi(y, )} = 5 Tdi(y, ») .
Since Kdi(y, z) < aK/T < a/2 < 1/2, we deduce
diﬂ(x’ y) é ng(yy x) < a ,
least non-
represent which is a contradiction.
0,1, -, We proceed to get (4).
%, repre- The measure p, = ((z — 2)*/p!)¢t represents evaluation at z on

R(X). Thus o = (2 — ), annihilates RB(X). Now
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o) = = | = qum) = 1+ (v - a) ,
Db: L=y
80, since

[y — o)) =y — | ta(y)

< Ly = o @om X 0w) <y,
D:

we have d(y) # 0. Also ¢'(y) < + oo, since '(y) < + o, by (2). Thus,
by the lemma, the measure
o _ (z — x)"+p
o)z —vy) plo(Y)(z - vy)

represents evaluation at ¥ on R(X), so

(z _ x)?—%—l[u
) (z — y)'*

annihilates the class
={feRX,D|fw)=fy)="+-- =7 =0},

since ' (y) < + o0, by (2).
Let e = 6(y). Then |e| >1—b>1/2, and also |1 —e¢| <b.
We have

di(y, =) = sup {| "' ()| f € B}
- {01 - 22 o 3

e(z
ez — Y™ — (2 — x)"™"
s [|E = i)
1 (z_y)l’+1_(z_x)?+1— _
= | —_ -9ldixl@
szle— vl {|F(0)E=alm@ + el

Now we observe that (z — 2)*/(z — ¥)*™ is a linear combination of
terms

1 7x—y""r_"—"—_“(x—y)vr
z—y (z—y) (z —yy+

so that we may continue the inequality:

p+1
2K le—yl e —y e + 20 1],



). Thus,

| <b.

¢l (@)

el

sination of

EQUICONVERGENCE OF DERIVATIONS 547

where K, depends only on », and so, continuing:

< 2K, + || 110

IA

a
T
This concludes the proof.

5. We now establish a convergence theorem for the d” metric.

THEOREM 3. Suppose p =0, and x is not a peak point for B(X),
or p=1, and R(X) admits a bounded pth order point derivation at
z. Suppose there is a positive constant K, and a sequence of points
{y.), elements of X, which converges to z (in Euclidean morm), such
that

for n =128, ---. Then {y,} converges to « in the d° metric.

Proof. Select a measure g, supported on 06X, with no mass at
2, which represents the pth order derivation at z.

By Theorem 2, it suffices to show that |z — y.|*#(y,) is small
for each v,1 < v < »p + 1, provided = is large.

Fixe>0,and y,1=vp+ 1. If z€0X, then for each n>1,

Iz — y'n] > K,
|x - yn! o
by (3). Choose 7, > 0 such that
#Bl,r) < L
Choose r > 0 such that
T eminl ¢ 1
F<min ot 31

Then choose N so large that » = N ensures |z — y,| < r. Then, for
n = N,

@~ Y |20 w,) = fx-MS,%'%';%

R P P
C\B(%,ry) Blz,r])

gl B, )
rj2y K

A

IA

[ e _
'E"‘f_?—s.
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This completes the proof.

COROLLARY 1. Suppose X satisfies a come condition at o point
xcoX. Then whenever p =0 and x s not a peak point for R(X),
or p=1 and R(X) admits a bounded pth order point derivation at
%, it follows that d’(y,x)— 0 as y approaches x along the midline
of the cone.

This clearly follows from Theorem 3. Using the language of
tangent cones [3, p. 233] we can say more.

COROLLARY 2. Let xcoX, E be a compact connected subset of X,
xe E, E\{x}C X, and suppose that

Tan (E, ) N Tan (60X, x) = (0) .

Then under the same hypothesis on p, R(X) as before, d”(y, ) — 0
as y approaches ¥ in E. ‘

~ COROLLARY 3. Suppose X satisfies a cone condition at z, and
I is the midline of the cone. Suppose R(X) admits a bounded p*®
order point derivations at x(p=1). Let D? and D™ denote the
normalized point derivations of orders p and p — 1 at x. Then

Df = lim{ L = DS ]

y—z —-
yel y %

for every f e R(X), and the convergence is equiconvergence on R(X, 1).
This follows readily from Corollary 1.

6. For examples to which these results apply, see [5], [10].
Hallstrom [6] has given necessary and sufficient conditions that R(X)
admit a bounded point derivation at a point x. Essentially, the
complement of X has to be “thin” at x, in terms of analytic capacity.

Let a,, 7, be two sequences of positive numbers such that

1>a'm+/rn>an>a/n_'rn>a’n+1+,rn+1’

for n =1,2,8,---. Let D, denote the open disc with centre a, and
radius »,. Let X be the compact set obtained by removing Uiz D,
from the closed unit dise D. X is an example of a so-called L-set.

For these L-sets, the point 0 is a peak point for R(X) if and
only if 3+= r./a, = +o [10], and R(X) admits a p** order bounded
point derivation at 0 provided >.i= 7./(ar™) < + . Let E denote
the negative real axis. Applying Corollary 1 to X we obtain the
following:

[ Y - B I )

ir

(.
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THEOREM 4.
(1) Suppose S = rhfa, < +oo. Then lim,., (d(z, 0) = 0.

zeE

(2) Suppose >yiz v, /() < +oo. Then 1im,..%d”(z, 0)=0.
ye

By choosing, say, a, = 1/(n + 1), r, = L(n + 1)!! we can ensure
that the hypothesis of (2) is satisfied for every p < 0, so that f™®z
is equiconvergent to f*(0) on Ry(X, 1), for every p.

One might wonder whether some kind of Browder density theorem
might work for p» > 0: if R(X) admits a pth order bounded point
derivation at «, are there always other bounded derivations at nearby
points? The answer isino: in [9] an example is constructed in which
R(X) admits a first order bounded point derivation at just one point.
Moreover, this example can be modified to produce an example with
a bounded point derivation of every order at that certain point, and
no other bounded point derivations of any order =1 anywhere else.

What goes wrong? The following observation may clarify
things. If x represents a first order bounded point derlvatlon on
R(X) at z and ¢ (y) < + oo, set

c-[e=2 ””) duz) ,

(2 — 2 o
= | B due)

Then, provided C == 0 and D == 0, the measure
{_1_(z —x) _L(z —_ x)2}ﬂ

represents a first order bounded point derivation on R(X) at y. So
this gives a sufficient condition for the existence of other derivations:
{y| f(y) < +,C=0,D= 0} % @. Unfortunately g is the potential
associated with harmonic functions in R*, and the associated capacity,
C? vanishes on planar sets. So it is entirely possible, even likely,
that ¢%(y) = + on spt . In fact, t(y) < + - if and only if

S 61Aw) < +o

where A, (y) = {z|1/2"" < |z —y|<1/2", n =128, -.-. Thus, for
instance, if

7

=0

(i.e., | ¢#| has positive area density at y), then g(y) = + ce.
Returning to the problem posed in § 1, we note that for z ¢ a(X‘ ),
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without some condition on X, we cannot ensure that there will be a
sequence x,— x Wwith z,€ X and f'(x,) equiconvergent to f'(x) on
Ry(X, 1), even when s'(x) < + . For let X be the example of [9],
with a bounded point derivation just at 0, and select any sequence
{w,} of distinct points of X, tending to 0. For each n(n =1,2,8, ---)
there is a function f, € Ry(X, 1) such that fi(x,) > 4n. Inductively,
choose a closed disc D, centered at x, such that f, is analytic in a
neighborhood of D,, || fullo, £ 2, [fu(?)| > 2n for z¢ D, D,ND, =2
for m <n,z,¢D, for m >n. Form a new compact set ¥ = XU
(Uiz D). Then R(Y) still admits a bounded point derivation at 0.
The only other bounded point derivations are at points of the D,.
For ze D,, s'(z) > n. So there is no sequence of points of Y = Uiz D,
along which f’ is equiconvergent to f'(0) on R(Y, 1).

7. Let X be a compact subset of the plane. Let A be an algebra
of functions on C which contains the polynomial and all of whose
functions are analytic on X. Suppose A4, regarded as a subset of
C(X), forms a function algebra. Suppose A enjoys the Arens property:
For each re¢ X,

"A, ={fe€A]|f is analytic on a neighborhood of x}

is dense in A in the uniform norm on X. (A sufficient condition for
this is that A contains a dense subset B which is “ T,-invariant”,
i.e., the function T,f, given by

belongs to B whenever f belongs to B and ¢ is a continuously differ-
entiable function with compact support. An example is 4 = A(X),
the algebra of all continuous functions on € which are analytic on
X; another example is 4 = A*(X), the uniform closure on X of those
functions in A(X) which satisfy a condition Lip & on C.) Then most
of what we have done for R(X) goes through for A. New functions
d?, s*, d? may be defined analogously, for instance:

di(z, y) = sup {| fP(x) — fPW I Ffed [ fllx=1,
f is analytic on a neighborhood of {xz, y}}.

For any € C we can form A,. So given any compact set Y < C we
may form a new algebra

Y(4) = ) (Uniform closure on Y of 4, N A(Y)).
zel

Y(A) is clearly a uniform algebra on Y, contains the polynomials,
and all its functions are analytic on Y. Moreover, by its definition,



EQUICONVERGENCE OF DERIVATIONS 551

it has the Arens property.

Replacing R(X) by A, Theorem 1 will go through, except that
(7) will have to be changed:

(7)) if xedX, V, is a decreasing sequence of compact meighbor-
hoods of %, whose intersection is{z}, and X, = X U V,, then si(x) 1 s°(x),
and di(z, )1 d°(x, -), where si and di are the s* and d° functions
associated with the algebras X,(A).

Lemma 1 goes through, using the Arens property.

The maximal ideal space of A is X (cf. [1], its Silov boundary
is a subset of 06X, so Theorems 2 and 38 work for A in place of
R(X).

8. Now we turn to H=(U), the Banach algebra of bounded
analytic functions (with L* norm) on the bounded open set UcC.
First, we look at H*(U) itself. There is a natural projection map
from the maximal ideal space .# of H*(U) to U, given by ¢ — ¢(2)
(recall that z denotes the identity map of C). The fiber _/Z over a
point x € U consists of one point ¢, = evaluation at . The fiber _#,
over a point x € 0U is usually very large. Gamelin and Garnett [5]
showed that a necessary and sufficient condition for _#, to be a peak
set for H*(U) is that

o0

(4) S e ALN\T) = +eo

n=1

Here v denotes the analytic capacity:
Y(K) = sup {| f'(cc) | | f is analytic off K, || f || £ 1, f(eo) = 0} .

When _#, is not a peak set, they showed that it contains a distin-
guished homomorphism, ¢,, characterized by the property that it has
a representing measure on .# with no mass on _/Z.

We say that an element De H*(U)*, a continuous linear map of
H>(U) to C, is a first order bounded point derivation at a point
e A if

D(fg) = ¢(f)Dg + ¢(9)Df

whenever f, ge H*(U). D is called regular if Dz = 0, and a regular
D is mormalised if Dz =1. We shall be concerned with regular
derivations only, but we note that there are usually many derivations
on H*(U) which annihilate z. For instance, let U be the open unit
disc. Then Hoffman [7] has shown that the fiber _# over the point
1¢0U contains many homeomorphic images of the unit disc, on each
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of which all the functions in H>(U) are analytic. So there is a
superabundance of bounded point derivations at points of _#, and
each of these derivations annihilates z.

Inductively, we say H*(U) admits a regular normalized pth order
bounded point derivation at ¢e . if the following hold:

(1) For each v, 1 <v < p—1, D”is a vth order regular normal-
ized bounded point derivation at 4.

(2) There is an element D”e H*(U)* such that

» _a(P v £ YP—v
Do) = 3(2) DD,
for all f, ge H*(U), where D°f means 4(f).

(8) Drz" = p!

We observe that for p = 1 there cannot be any regular pth order
bounded point derivation at a point ¢ € _#Z\{¢.}. For such a deriva-
tion would have a representing measure ¢ on .2 and then ((z—x)"/p!)¢
would be a representing measure for ¢ with no mass on _#;, which
is impossible.

THEOREM 5. Let xc U, p=1. Then H”(U) admits a regular
bounded pth order point derivation at the distinguished homomorphism
6, ©n the fiber over x if and only if

+oo

(5) 320y (A (a)\U) < +eo .

n=1

Proof. If (5) holds, then certainly (4) fails, so .+ is not a peak
fiber and ¢, exists. By a device in Gamelin and Garnett’s proof of
the peak set criterion [5, p. 459, third paragraph], U can be shrunk
a little to produce a compact set X with the properties:

(1) XcUU{xl,

(2) zeX,

(3) Siiz2ttimp(4 (2N\X) < +co.

By Hallstrom’s Theorem [6, p. 156], R(X) admits a (normalized)
bounded point derivation of order » at z. Choose a representing
measure  for this derivation with support on X and mo mass at x.
Then, for v =0, 1, -+, p the measure g, = (V!(z — )" */pl)# represents
a (normalized) vth order bounded point derivation on R(X) at =z, if
v =1, and g, represents z and has no mass at x. Now any function
in H*(U) which extends analytically to a neighborhood of x belongs
to R(X), so for any two such functions, f and g, we have

(6) [ oare = 3,(7) | sar. | oaps_..

Since
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Since, as is well-known [5, Cor. 2.2], the set of all such functions is
pointwise boundedly dense in H=(U), the dominated convergence
theorem implies that (6) holds for any f, g€ H*(U). Thus p repre-
sents a regular bounded pth order point derivation on H~(U) at 4,.

For the other direction, assume (5) fails. If _#; is a peak set
there is no distinguished homomorphism, and nothing to prove. Other-
wise, (4) fails, and we may, just as in Hallstrom’s proof of his
Theorem 1’ [6, pp. 163-164], construct a sequence of functions g,,
each one in H™(U) and analytic in a neighborhood of x such that
lgP@)| > n| glle. Thus H<(U) cannot admit a p* order bounded
point derivation at ¢,. This proves the theorem.

We remark that there is at most one regular normalised bounded
pth order point derivation at a distinguished homomorphism ¢.. For,
from the proof of Theorem 5, any two agree on a dense subset of
H>(U), and have representing measures with no mass on .#,. Thus,
by dominated convergence, they coincide.

9, The zero order Gleason metric d° on the maximal ideal space
of H*(U) is given by

&g, ¥) = sup (| 4(F) — ¥(£) || F e HU), || Fllo S 1) .

To define the higher order metrics, we take first the case where ¢
and + are distinguished homomorphisms at each of which H”(U)
admits normalised regular bounded p*" order point derivations D} and
D;. Then

d*(¢, ¥) = sup{| Dzf — Dif || fe H™(U), [| Il = 1} .

In all other cases, we set d”(¢, ¥) = +co. Let s°(¢) be the norm of
Dz, if this exists, otherwise s”(¢) = +. For points ye U we will
write y for “evaluation at y”.

THEOREM 6. Let p=1. Suppose there is a constant K >0 and
a sequence of points y,€ U, |y, — x| —0 as n— + o0, such that

dist [y, 0U] = K|y, — 2] .

Suppose H*(U) admits a regular p™ order bounded point deri-
vation at the distinguwished homomorphism ¢, over xz. Then
A" (Yuy $:)— 0 as m— + oo,

Proof. We shall deduce this from Theorem 8. As in Theorem
5, we may shrink U to a compact set X which satisfies the hypotheses
of Theorem 3, with a smaller K. Thus there are representing meas-
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ures f, for the D2, and p for D}, with closed support in UU .
and no mass on _#, such that

Sfc%——» Sfd#

uniformly for fe R(X). Again, since Ry(X) is pointwise boundedly
dense in H=(U), this means that D} f = S fdp, is equiconvergent to

DyLf = S fdp for all fe H(U).
The analogous result when p = 0 (also a corollary of Theorem 3)
is due to Gamelin and Garnett [5, 5.1].
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