EQUICONVERGENCE OF DERIVATIONS

A. G. O'FARRELL

This paper is a study of bounded point derivations on the classical Banach algebras of analytic functions of a complex variable. The results are positive in character. The higher-order Gleason metrics d^p of R(X) are introduced and conditions are studied under which convergence takes place with respect to these metrics. In particular, if R(X)admits a pth-order bounded point derivation at a point $x \in \partial X$ and X satisfies a cone condition at x, then $d^{p}(y, x)$ tends to 0 as y tends to x along the midline of the cone. Similar results hold for the other classical function algebras. In the case of the algebra $H^{\infty}(U)$, for open $U \subset C$, the analogous results hold only for regular derivations (a regular pth-order derivation maps z^p to a nonzero complex number). The points of the maximal ideal space of $H^{\infty}(U)$ at which regular bounded point derivations exist are characterized in terms of analytic capacity, following Hallstrom.

1. Let x be a point of the plane C and A be a class of functions analytic in a disc D centered at x, each function having modulus bounded by 1. Then, as is clear from Cauchy's integral formula, the family $\{f' \mid f \in A\}$ is equicontinuous at x, and for every sequence $\{x_n\} \to x$, the sequence $\{f'(x_n)\}$ converges to f'(x), uniformly on A, i.e., $\{f'(x_n)\}$ is equiconvergent to f'(x). More generally, for any integer $p \ge 1$, $\{f^{(p)}(x_n)\}$ is equiconvergent to $f^{(p)}(x)$.

Now, given a C-algebra A of continuous functions on a compact set $X \subset C$ which are analytic on \dot{X} , it is often possible to find points on ∂X at which nonzero point derivations exist on A. A (first order) point derivation at $x \in X$ on A is a linear functional $D: A \longrightarrow C$ such that

$$D(fg) = f(x)Dg + g(x)Df,$$

whenever $f, g \in A$. This notion generalizes that of derivative at a point. For points $y \in \dot{X}$ all point derivations are of the form $f \to \alpha f'(y)$ for some complex constant α (independent of f) provided A contains the polynomials. Suppose A contains the identity map z and D is a normalized point derivation at x on A, i.e., Dz = 1. A natural question is:

Q1. When is there a sequence of points $x_n \in \mathring{X}$, converging to x, such that the sequence $\{f'(x_n)\}$ converges to Df for all $f \in A$?

A bounded point derivation is a point derivation that is continuous

with respect to the uniform norm on X. If A admits a bounded point derivation D at a point x we may ask:

Q2. Can we find $x_n \to x$, $x_n \in \mathring{X}$, such that $f'(x_n)$ is equiconvergent to Df on $A_1 = A \cap \{f \mid ||f||_X \leq 1\}$?

We shall concern ourselves with Q2, which lends itself to treatment by Banach algebra techniques.

2. We treat first the case A = R(X), the *uniform* closure on X of $R_0(X)$, the class of rational functions with poles off X. R(X) is a function algebra on X [2, p. 2]. The Gleason metric d^0 on X, with respect to R(X), is defined by

$$d^{0}(x, y) = \sup \{|f(x) - f(y)| | f \in R_{0}(X), ||f||_{X} \leq 1\},$$

for $x, y \in X$. Here $||f||_X$ denotes the sup norm of F on X. The properties of X with respect to this metric have been thoroughly investigated. An account may be found in [2], [4]. If x and y belong to the same component of X, then $d^{\circ}(x, y) < 2$. If x is a peak point for R(X), then $d^{\circ}(x, y) = 2$ whenever $y \neq x$. This prompted the definition of Gleason part. A part P of the algebra R(X) is a subset of X which forms an equivalence class under the relation $x \sim y < > d^{\circ}(x, y) < 2$. The structure of parts can be very complicated. Davie has shown that P may be disconnected, and the Swiss cheese example shows that P may have no interior (cf. [4]). However, a nontrivial part (a part which does not just consist of one peak point) has full area density at each of its points, and in fact Browder [2, p. 177] has shown that every Gleason ball $\{x \in X \mid d^{\circ}(x, a) < \varepsilon\}$ ($\varepsilon > 0$) about a nonpeak point a has full area density at a.

In particular, a is not isolated in the part metric d° , and there is a sequence of points $x_n \in P \setminus \{a\}$ which converges to a simultaneously in the Euclidean and Gleason metrics. In plain language, as $n \to +\infty$, $|x_n - a| \to 0$, and $\{f(x_n)\}$ is equiconvergent to f(a) for $f \in R_0(X) \cap \{f \mid ||f||_X \le 1\} = R_0(X, 1)$.

For $p \ge 1$ we define the pth order Gleason metric on X by

$$d^{p}(x, y) = \sup \{ |f^{(p)}(x) - f^{(p)}(y)| \mid f \in R_{0}(X, 1) \},$$

for $x, y \in X$.

The first thing to note is that $d^{r}(x, y)$ may be $+\infty$, so we are using the word "metric" a little loosely. An ordinary metric may be obtained from d^{r} by composing it with the arctangent function, but we would rather not do this. We extend d^{r} to $C \times C$ by writing

1

.

s r

c(

fι

 d_n^p d_n^p

point

3rgent

treat-

re on R(X), with

The bughly and y x is a smpted ζ) is a elation complision wever, ε peak rowder $(\varepsilon > 0)$

1 there neously $\rightarrow +\infty$, $\c l_0(X)\cap$

by

we are may be on, but writing

 $d^{p}(x, y) = d^{p}(y, x) = +\infty$ whenever one of the elements x, y fails to be in X.

For $p \geq 0$ we say that a (normalized) pth order bounded point derivation on R(X) exists at a point $x \in X$ if and only if the functional $f \to f^{(p)}(x)$ on $R_0(X)$ extends to a continuous linear functional D_x^p on R(X), i.e., if and only if

$$s^{p}(x) = \sup \{ | f^{(p)}(x) | | f \in R_{0}(X, 1) \} = || D_{x}^{p} ||$$

is finite. Suppose this happens, and x_n is a sequence of points of \mathring{X} tending to x (in Euclidean norm). Then to say that $f^{(p)}(x_n) \to D_x^p f$ equiconvergently on R(X,1) is the same thing as saying that $d^p(x_n,x) \to 0$.

Notice that the two definitions so far available for a normalized first order bounded point derivation on R(X) agree.

For purposes of computation it is usually easier to work with the function d_0^p , defined by

$$d_0^p(x, y) = \sup\{|f^{(p)}(y)| | f \in R_0(X, 1) \text{ and } f(x) = f'(x) = \cdots = f^{(p)}(x) = 0\}$$
.

3. The elementary properties of the functions d^p , s^p , d^p are summarized in the following theorem. Here, as usual, p is a nonnegative integer.

THEOREM 1. Let $x, y \in C$. Then

- $(1) |s^{p}(x) s^{p}(y)| \leq d^{p}(x, y) \leq s^{p}(x) + s^{p}(y);$
- (2) $d^{p}(x, y) \ge (p + 1)! |x y|/(\operatorname{diam} X)^{p+1};$
- (3) for $x \in X$,

$$s^{p+1}(x) = \lim_{y\to x} \frac{d^p(x, y)}{|x-y|};$$

(4) for each compact subset K of a component of \mathring{X} there is a constant L>0 such that

$$d^{p}(x, y) \leq L |x - y|,$$

for $x, y \in K$, so d^p is continuous on \dot{X} ;

- (5) s^p is continuous on \mathring{X} ;
- (6) $d_0^p(x, y) \leq d^p(x, y) \leq \{1 + \exp(\operatorname{diam} X)\} \{\sup_{0 \leq \nu \leq p} s^{\nu}(x)\} d_0^p(x, y);$
- (7) if X_n is a decreasing sequence of compact sets, each containing X in its interior, whose intersection is X, then $s_n^p \uparrow s^p$ and $d_n^p \uparrow d^p$, where s_n^p and d_n^p are respectively, the s^p -function and the d^p -function associated with X_n ;

- (8) s^p and d^p are lower semi-continuous;
- (9) if $|x_n x| \to 0$ and $\{s^p(x_n)\}$ is a bounded sequence, then $s^p(x)$ is finite;
- (10) if $s^p(w) < +\infty$ for some $w \neq x$, then $s_p(x) = +\infty$ if and only if $d^p(x, y) = +\infty$ for every $y \neq x$;
 - (11) x is an interior point of X if and only if

$$\sup_{n\geq 1} \left[\frac{1}{n} \log \frac{s_n(x)}{n!} \right] < +\infty.$$

Proof.

- (1) is clear.
- (2): Take $f(z)=(z-y)^{p+1}/(\operatorname{diam} X)^{p+1}$. Then $f\in R_0(X,1)$, so $d^p(x,y)\geq \|f^{(p)}(x)-f^{(p)}(y)\|.$
- (3) requires a lengthy but straightforward argument, using the Cauchy integral formula.
 - (4) follows from (3), using compactness.
 - (5) follows from (1) and (4).
 - (6): For the second inequality, let $f \in R_0(X, 1)$, and form

$$g(z) = f(z) - \sum_{\nu=0}^{p} \frac{f^{(\nu)}(x)}{\nu!} (z-x)^{\nu}.$$

Then $g(x) = g'(x) = \cdots = g^{(p)}(x) = 0$, and

$$\begin{aligned} ||g||_{X} & \leq 1 + \sum_{\nu=0}^{p} \frac{s^{\nu}(x)}{\nu!} (\operatorname{diam} X)^{\nu} \\ & \leq \left\{ 1 + \sum_{\nu=0}^{p} \frac{(\operatorname{diam} X)^{\nu}}{\nu!} \right\} \left\{ \sup_{0 \leq \nu \leq p} s^{\nu}(x) \right\} \\ & \leq \left\{ 1 + \exp\left(\operatorname{diam} X\right) \right\} \left\{ \sup_{0 \leq \nu \leq p} s^{\nu}(x) \right\}. \end{aligned}$$

- (7) follows from the fact that each $f \in R_0(X, 1)$ belongs to every $R(X_n)$ from some point on.
- (8): By (4), (5), and (7), s^r and d^r are increasing limits of continuous functions.
 - (9): Take $X_m \downarrow X$ as in (7). For each $m, x \in \mathring{X}_m$, so by (5),

$$s_m^p(x) \leq \sup_{n \geq 1} s_m^p(x_n)$$

$$\leq \sup_{n \geq 1} s^p(x_n).$$

Thus, by (7),

$$s^p(x) = \lim_{m \to \infty} s^p_m(x) \leq \sup_{n \geq 1} s^p(x_n) < + \infty$$
.

 $3n s^p(x)$

(10): We may assume p > 0. If $d^p(x, y) = +\infty$ for every $y \neq x$, then by (1),

if and

$$s^p(x) \geq d^p(x, w) - s^p(w) = +\infty$$
.

This proves one direction.

If $s^{p}(x) = +\infty$ and $d^{p}(x, y) < +\infty$ for some y, then assume p is minimal. We have $x \in X$ and so we may choose a sequence $f_n \in R_0(X, 1)$ such that

$$|f_n^{(p)}(x)| \longrightarrow +\infty$$

while $|f_n^{(p)}(x) - f_n^{(p)}(y)| \leq M$ for all n, for some constant M. Form

$$g_n(z) = (2z - x - y)f_n(z)$$
.

Then

sing the

L), so

$$g_n^{(p)}(z) = 2p f_n^{(p-1)}(z) + (2z - x - y) f_n^{(p)}(z)$$
.

Thus

$$\begin{split} | \ g_n^{(p)}(x) - g_n^{(p)}(y) \ | \\ &= | 2p f_n^{(p-1)}(x) + (x-y) f_n^{(p)}(x) - 2p f_n^{(p-1)}(y) - (y-x) f_n^{(p)}(y) \ | \\ &\ge | x-y \ | \ | f_n^{(p)}(x) + f_n^{(p)}(y) \ | \\ &- 2p \ | f_n^{(p-1)}(x) - f_n^{(p-1)}(y) \ | \longrightarrow + \infty \ \text{ as } n \longrightarrow + \infty \ . \end{split}$$

(11): The point x is an interior point of x if and only if

$$s_n(x) \leq M^n n!$$

for some constant M > 0. ("Only if" is clear, and "if" is true because the inequality implies that every function in $R_0(X, 1)$ is actually analytic in a full disc centered at x. This forces $x \in X$.) (11) is just a way of rewriting this.

to every

4. For our purposes all measures will be finite complex Borel regular measures with compact support in C. For $\nu > 0$, the potential of order ν of a measure μ is given by

$$\mu^{
u}(z) = \int \frac{d\mid \mu\mid (\zeta)}{\mid \zeta-z\mid^{
u}}$$
 ,

where $|\mu|$ is the total variation measure of μ . Wherever $\mu^1(z) < +\infty$ we define the Cauchy transform of μ by

$$\hat{\mu}(z) = \int \frac{d\mu(\zeta)}{\zeta - z}$$
.

For every continuous linear functional L on R(X) there is a measure

 \mathbf{m}

s of con-

· (5),

 μ , supported on X, which "represents L on R(X)", i.e.,

$$\int f d\mu = Lf$$

for every $f \in R(X)$. This fact follows from the Hahn-Banach and Riesz Representation theorems. Also, μ may be chosen to have its support on ∂X , since R(X) and $R(X) \mid \partial X$ are isomorphic Banach algebras. An annihilating measure for R(X) is a measure μ on X such that

$$\int f d\mu = 0$$

for every $f \in R(X)$. We write $\mu \perp R(X)$. The following easy fact was first noted by Bishop, and plays a central role in our theory (cf. [2, p. 171]).

LEMMA. If $\mu \perp R(X)$, $\mu^{\iota}(y) < +\infty$, and $\widehat{\mu}(y) \neq 0$, then the measure

$$\frac{1}{\widehat{\mu}(y)} \frac{1}{z-y} \mu$$

represents "evaluation at y" on R(X), i.e.,

$$\int f d\mu = f(y)$$

for $f \in R(X)$.

The case p=0 of the following theorem is due to Browder [2, p. 176].

THEOREM 2. Let p be a nonnegative integer. Suppose the measure μ represents a bounded pth order point derivation on R(X) at x. Then for every given a>0 there is a corresponding b>0 such that $d^p(x,y)< a$ whenever

(2)
$$\sum_{\nu=1}^{p+1} |x-y|^{\nu} \mu^{\nu}(y) < b.$$

Proof. We proceed by induction on p: Suppose p is the least nonnegative integer for which the proposition fails. Let μ represent D_x^p and a>0 be given. We may suppose a<1. For $\tau=0,1,\cdots,p-1,R(X)$ admits a bounded τ th order point derivation at x, represented by

1

$$\mu_{\tau} = \frac{\tau!(z-x)^{p-\tau}}{p!} \mu ,$$

so there are numbers $b_{\nu} > 0$ such that

ach and have its

Banach μ on X

(3)
$$\sum_{\nu=0}^{\tau+1} |x-y|^{\nu} \mu_{\tau}^{\nu}(y) < b_{\tau}$$

forces $d^{\epsilon}(x, y) < a/2$. Now

$$\mu_{\tau}^{\nu}(y) = \int \frac{\tau! |z - x|^{p-\tau}}{|z - y|^{\nu}} d |\mu| (z)$$

$$\leq \tau! (\operatorname{diam} X)^{p-\tau} \mu^{\nu}(y) ,$$

asy fact r theory so, setting $c_{\tau} = b_{\tau} \{ \sup_{0 \le \tau \le p} \tau! (\operatorname{diam} X)^{p-\tau} \}^{-1}$, and $c = \inf_{0 \le \tau \le p-1} c_{\tau}$, we deduce that $\sum_{\nu=0}^{p+1} |x-y|^{\nu} \mu^{\nu}(y) < c$ forces (3) for $\tau = 0, 1, \dots, p-1$. Let $K = 1 + \exp(\operatorname{diam} X)$,

$$T = 2\{\sup_{0 \le \tau \le p} s^{\nu}(x)\}K.$$

then the

Note that $T \ge 2K$, since $s^0(x) = 1$.

Choose b>0 to be smaller than each of the numbers c, 1/2, $p! (\operatorname{diam} X)^{-p-1}$ and $a\{2T(K_p+||\mu||)\}^{-1}$, where $K_p>0$ is a constant, depending only on p, which will be described later.

Let (2) hold. We will show that $d^p(x, y) < a$. We claim it suffices to show

$$(4) d_0^p(y, x) < a/T.$$

For, assuming (4), we have by Theorem 1(6), (1),

$$egin{aligned} d^{p}(x,\,y) & \leq K\{\sup_{0 \leq
u \leq p} s^{
u}(y)\} d^{p}_{0}(y,\,x) \ & \leq K\{\sup_{0 \leq
u \leq p} s^{
u}(x) + \sup_{0 \leq
u \leq p} d^{
u}(x,\,y)\} d^{p}_{0}(y,\,x) \;. \end{aligned}$$

wder [2,

measure x. Then such that Thus, if $d^p(x, y) \ge a$, then $d^p(x, y) = \sup_{0 \le \nu \le p} d^{\nu}(x, y)$, since (3) holds for $\tau = 0, 1, \dots, p-1$, so

$$d^{p}(x, y)\{1 - Kd^{p}_{0}(y, x)\} \leq \frac{1}{2} Td^{p}_{0}(y, x).$$

Since $Kd_{\delta}^{p}(y, x) < aK/T < a/2 < 1/2$, we deduce

$$d^p(x, y) \leq Td_0^p(y, x) < a$$

least nonrepresent : 0, 1, ...,

x, repre-

which is a contradiction.

We proceed to get (4).

The measure $\mu_0 = ((z-x)^p/p!)\mu$ represents evaluation at x on R(X). Thus $\sigma = (z-x)\mu_0$ annihilates R(X). Now

$$\hat{\sigma}(y) = \frac{1}{p!} \int \frac{(z-x)^{p+1}}{z-y} d\mu(z) = 1 + (y-x)\hat{\mu}_0(y)$$
,

so, since

$$egin{align} |\ (y-x)\hat{\mu}_{\scriptscriptstyle 0}(y)\ | & \leq |\ y-x\ |\ \mu_{\scriptscriptstyle 0}^{\scriptscriptstyle 1}(y)\ & \leq rac{|\ y-x\ |\ ({
m diam}\ X)^{p+1}\mu^{\scriptscriptstyle 1}(y)}{p!} < b < 1 \ , \end{gathered}$$

we have $\hat{\sigma}(y) \neq 0$. Also $\sigma^1(y) < +\infty$, since $\mu^1(y) < +\infty$, by (2). Thus, by the lemma, the measure

$$\frac{\sigma}{\hat{\sigma}(y)(z-y)} = \frac{(z-x)^{p+1}\mu}{p!\hat{\sigma}(y)(z-y)}$$

represents evaluation at y on R(X), so

$$\frac{(z-x)^{p+1}\mu}{\hat{\sigma}(y)(z-y)^{p+1}}$$

annihilates the class

$$B = \{ f \in R_0(X, 1) \mid f(y) = f'(y) = \cdots = f^{(p)}(y) = 0 \},$$

since $\mu^{p+1}(y) < +\infty$, by (2).

Let $e = \hat{\sigma}(y)$. Then |e| > 1 - b > 1/2, and also |1 - e| < b. We have

$$\begin{split} d_{0}^{p}(y, \, x) &= \sup \left\{ \left| \int f^{(p)}(x) \, \right| \, f \in B \right\} \\ &= \sup \left\{ \left| \int f(z) \left\{ 1 - \frac{(z - x)^{p+1}}{e(z - y)^{p+1}} \right\} d\mu(z) \right| \, \right| \, f \in B \right\} \\ &\leq \int \left| \frac{e(z - y)^{p+1} - (z - x)^{p+1}}{e(z - y)^{p+1}} \right| \, d \mid \mu \mid (z) \\ &\leq \frac{1}{1 - b} \int \left| \frac{(z - y)^{p+1} - (z - x)^{p+1}}{(z - y)^{p+1}} - (1 - e) \right| \, d \mid \mu \mid (z) \\ &\leq 2 \mid x - y \mid \int \left| \sum_{\nu=0}^{p} {p \choose \nu} \frac{(z - x)^{\nu}}{(z - y)^{\nu+1}} \right| \, d \mid \mu \mid (z) + 2b \mid |\mu|| \, . \end{split}$$

Now we observe that $(z-x)^{\nu}/(z-y)^{\nu+1}$ is a linear combination of terms

$$\frac{1}{z-y}$$
, $\frac{x-y}{(z-y)^2}$, ..., $\frac{(x-y)^{\nu}}{(z-y)^{\nu+1}}$,

so that we may continue the inequality:

$$0 \leq 2K_p \mid x-y\mid \sum_{
u=1}^{p+1} \mid x-y\mid ^{
u-1}\mu^
u(y) + 2b \mid\mid \mu\mid\mid ,$$

where K_p depends only on p, and so, continuing:

$$\leq 2(K_p + ||\mu||)b$$

$$\leq \frac{a}{T}.$$

This concludes the proof.

5. We now establish a convergence theorem for the d^r metric.

THEOREM 3. Suppose p=0, and x is not a peak point for R(X), or $p \ge 1$, and R(X) admits a bounded pth order point derivation at x. Suppose there is a positive constant K, and a sequence of points $\{y_n\}$, elements of \dot{X} , which converges to x (in Euclidean norm), such that

(3)
$$\operatorname{dist}\left[y_{n}, \partial X\right] \geq K |y_{n} - x|$$

for $n = 1, 2, 3, \cdots$. Then $\{y_n\}$ converges to x in the d^p metric.

Proof. Select a measure μ , supported on ∂X , with no mass at x, which represents the pth order derivation at x.

By Theorem 2, it suffices to show that $|x - y_n|^{\nu} \mu^{\nu}(y_n)$ is small for each ν , $1 \le \nu \le p+1$, provided n is large.

Fix $\varepsilon > 0$, and ν , $1 \le \nu \le p+1$. If $z \in \partial X$, then for each $n \ge 1$,

$$\frac{|z-y_n|}{|x-y_n|} \ge K,$$

by (3). Choose $r_1 > 0$ such that

$$\mu B(x, r_1) < \frac{\varepsilon K}{2}$$
.

Choose r > 0 such that

$$rac{r}{r_1} < \min\left\{rac{arepsilon}{2^{
u+1} \left|\left| rac{arepsilon}{\mu}
ight|
ight|}
ight. , rac{1}{2}
ight\} \ .$$

Then choose N so large that $n \ge N$ ensures $|x - y_n| < r$. Then, for $n \ge N$,

$$|x - y_n|^{\nu} \mu^{\nu}(y_n) = |x - y_n|^{\nu} \int \frac{d |\mu|(z)}{|z - y_n|^{\nu}}$$

$$= |x - y_n|^{\nu} \left\{ \int_{C \setminus B(x, r_1)} + \int_{B(x, r_1)} \right\}$$

$$\leq \frac{r^{\nu} ||\mu||}{(r_1/2)^{\nu}} + \frac{\mu B(x, r_1)}{K^{\nu}}$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

|< b.

2). Thus,

 $\mu \mid (z)$

 $|\mu|$.

ination of

This completes the proof.

COROLLARY 1. Suppose \mathring{X} satisfies a cone condition at a point $x \in \partial X$. Then whenever p = 0 and x is not a peak point for R(X), or $p \geq 1$ and R(X) admits a bounded pth order point derivation at x, it follows that $d^p(y, x) \to 0$ as y approaches x along the midline of the cone.

This clearly follows from Theorem 3. Using the language of tangent cones [3, p. 233] we can say more.

COROLLARY 2. Let $x \in \partial X$, E be a compact connected subset of X, $x \in E$, $E \setminus \{x\} \subset \mathring{X}$, and suppose that

$$\operatorname{Tan}(E, x) \cap \operatorname{Tan}(\partial X, x) = (0)$$
.

Then under the same hypothesis on p, R(X) as before, $d^{p}(y, x) \rightarrow 0$ as y approaches x in E.

COROLLARY 3. Suppose \dot{X} satisfies a cone condition at x, and Γ is the midline of the cone. Suppose R(X) admits a bounded p^{th} order point derivations at $x(p \ge 1)$. Let D_x^p and D_x^{p-1} denote the normalized point derivations of orders p and p-1 at x. Then

$$D_x^p f = \lim_{\substack{y \to x \ y \in I}} \left[rac{f^{(p-1)}(y) - D_x^{p-1} f}{y - x}
ight]$$

for every $f \in R(X)$, and the convergence is equiconvergence on R(X, 1).

This follows readily from Corollary 1.

6. For examples to which these results apply, see [5], [10]. Hallstrom [6] has given necessary and sufficient conditions that R(X) admit a bounded point derivation at a point x. Essentially, the complement of X has to be "thin" at x, in terms of analytic capacity.

Let a_n , r_n be two sequences of positive numbers such that

$$1 > a_n + r_n > a_n > a_n - r_n > a_{n+1} + r_{n+1}$$
,

for $n = 1, 2, 3, \cdots$. Let D_n denote the open disc with centre a_n and radius r_n . Let X be the compact set obtained by removing $\bigcup_{n=1}^{+\infty} D_n$ from the closed unit disc D. X is an example of a so-called L-set.

For these L-sets, the point 0 is a peak point for R(X) if and only if $\sum_{n=1}^{+\infty} r_n/a_n = +\infty$ [10], and R(X) admits a p^{th} order bounded point derivation at 0 provided $\sum_{n=1}^{+\infty} r_n/(a_n^{p+1}) < +\infty$. Let E denote the negative real axis. Applying Corollary 1 to X we obtain the following:

1 t {: a C

ť.

w ir

(i.

THEOREM 4.

(1) Suppose $\sum_{n=1}^{+\infty} r_n/a_n < +\infty$. Then $\lim_{z\to 0\atop z\in E} (d^0(z,0)=0$.

(2) Suppose $\sum_{n=1}^{+\infty} r_n/(a_n^{p+1}) < +\infty$. Then $\lim_{\substack{z\to 0 \ y\in E}} d^p(z,0) = 0$.

By choosing, say, $a_n = 1/(n+1)$, $r_n = 1(n+1)!!$ we can ensure that the hypothesis of (2) is satisfied for every $p \leq 0$, so that $f^{(p)}z$ is equiconvergent to $f^{(p)}(0)$ on $R_0(X, 1)$, for every p.

One might wonder whether some kind of Browder density theorem might work for p > 0: if R(X) admits a pth order bounded point derivation at x, are there always other bounded derivations at nearby points? The answer is no: in [9] an example is constructed in which R(X) admits a first order bounded point derivation at just one point. Moreover, this example can be modified to produce an example with a bounded point derivation of every order at that certain point, and no other bounded point derivations of any order ≥ 1 anywhere else.

What goes wrong? The following observation may clarify things. If μ represents a first order bounded point derivation on R(X) at x and $\mu^2(y) < +\infty$, set

$$C = \int \frac{(z-x)^2}{z-y} d\mu(z) ,$$

$$D=\int \frac{(z-x)^2}{(z-y)^2} d\mu(z) .$$

Then, provided $C \neq 0$ and $D \neq 0$, the measure

$$V = \left\{ \frac{1}{C} \frac{(z-x)^2}{(z-y)^2} - \frac{1}{CD} \frac{(z-x)^2}{z-y} \right\} \mu$$

represents a first order bounded point derivation on R(X) at y. So this gives a sufficient condition for the existence of other derivations: $\{y \mid \mu^2(y) < +\infty, C \neq 0, D \neq 0\} \neq \emptyset$. Unfortunately μ^2 is the potential associated with harmonic functions in R^4 , and the associated capacity, C^2 , vanishes on planar sets. So it is entirely possible, even likely, that $\mu^2(y) \equiv +\infty$ on spt μ . In fact, $\mu^2(y) < +\infty$ if and only if

$$\sum_{n=1}^{+\infty} 4^n \mid \mu \mid (A_n(y)) < +\infty$$
 ,

where $A_n(y) = \{z \mid 1/2^{n+1} \le |z-y| \le 1/2^n\}, n = 1, 2, 3, \cdots$. Thus, for instance, if

$$\overline{\lim_{r\to 0}}\,\,\frac{\mid\mu\mid(B(y,\,r))}{r^2}>0$$

(i.e., $|\mu|$ has positive area density at y), then $\mu^2(y) = +\infty$. Returning to the problem posed in § 1, we note that for $x \in \partial(\mathring{X})$,

t a point for R(X), ivation at e midline

guage of

bset of X,

 $p(y, x) \rightarrow 0$

at x, and punded pth denote the Then

m R(X, 1).

: [5], [10]. that R(X) itially, the ic capacity. that

itre a_n and $\lim_{n\to1} \bigcup_{n=1}^{+\infty} D_n$ lled L-set. $\mathfrak{d}(X)$ if and er bounded t E denote obtain the

without some condition on \mathring{X} , we cannot ensure that there will be a sequence $x_n \to x$ with $x_n \in \mathring{X}$ and $f'(x_n)$ equiconvergent to f'(x) on $R_0(X,1)$, even when $s^1(x) < +\infty$. For let X be the example of [9], with a bounded point derivation just at 0, and select any sequence $\{x_n\}$ of distinct points of X, tending to 0. For each $n(n=1,2,3,\cdots)$ there is a function $f_n \in R_0(X,1)$ such that $f'_n(x_n) > 4n$. Inductively, choose a closed disc D_n centered at x_n such that f_n is analytic in a neighborhood of D_n , $||f_n||_{D_n} \leq 2$, $|f'_n(z)| > 2n$ for $z \in D_n$, $D_n \cap D_m = \emptyset$ for m < n, $x_m \notin D_n$ for m > n. Form a new compact set $Y = X \cup \bigcup_{n=1}^{+\infty} D_n$. Then R(Y) still admits a bounded point derivation at 0. The only other bounded point derivations are at points of the D_n . For $z \in D_n$, $s^1(z) > n$. So there is no sequence of points of $\mathring{Y} = \bigcup_{n=1}^{+\infty} \mathring{D}_n$ along which f' is equiconvergent to f'(0) on $R_0(Y,1)$.

7. Let X be a compact subset of the plane. Let A be an algebra of functions on C which contains the polynomial and all of whose functions are analytic on \dot{X} . Suppose A, regarded as a subset of C(X), forms a function algebra. Suppose A enjoys the A rens property: For each $x \in X$,

$$A_x = \{ f \in A \mid f \text{ is analytic on a neighborhood of } x \}$$

is dense in A in the uniform norm on X. (A sufficient condition for this is that A contains a dense subset B which is " T_{ϕ} -invariant", i.e., the function $T_{\phi}f$, given by

$$T_{\phi}f(z) = rac{1}{\pi} \int rac{f(z) - f(\zeta)}{z - \zeta} rac{\partial \phi(\zeta)}{\partial \overline{\zeta}} d\mathscr{L}^2(\zeta)$$

belongs to B whenever f belongs to B and ϕ is a continuously differentiable function with compact support. An example is A = A(X), the algebra of all continuous functions on C which are analytic on X; another example is $A = A^{\alpha}(X)$, the uniform closure on X of those functions in A(X) which satisfy a condition Lip α on C.) Then most of what we have done for R(X) goes through for A. New functions d^p , s^p , d_0^p may be defined analogously, for instance:

$$d^{p}(x, y) = \sup \{ |f^{(p)}(x) - f^{(p)}(y)| | f \in A, ||f||_{x} \le 1,$$

$$f \text{ is analytic on a neighborhood of } \{x, y\} \}.$$

For any $x \in C$ we can form A_x . So given any compact set $Y \subset C$ we may form a new algebra

$$Y(A) = \bigcap_{x \in Y} (\text{Uniform closure on } Y \text{ of } A_x \cap A(Y))$$
.

Y(A) is clearly a uniform algebra on Y, contains the polynomials, and all its functions are analytic on \mathring{Y} . Moreover, by its definition,

it has the Arens property.

Replacing R(X) by A, Theorem 1 will go through, except that (7) will have to be changed:

(7') if $x \in \partial X$, V_n is a decreasing sequence of compact neighborhoods of x, whose intersection is $\{x\}$, and $X_n = X \cup V_n$, then $s_n^p(x) \uparrow s^p(x)$, and $d_n^p(x, \cdot) \uparrow d^p(x, \cdot)$, where s_n^p and d_n^p are the s^p and d^p functions associated with the algebras $X_n(A)$.

Lemma 1 goes through, using the Arens property.

The maximal ideal space of A is X (cf. [1], its Šilov boundary is a subset of ∂X , so Theorems 2 and 3 work for A in place of R(X).

8. Now we turn to $H^{\infty}(U)$, the Banach algebra of bounded analytic functions (with L^{∞} norm) on the bounded open set $U \subset C$. First, we look at $H^{\infty}(U)$ itself. There is a natural projection map from the maximal ideal space \mathscr{M} of $H^{\infty}(U)$ to \overline{U} , given by $\phi \to \phi(z)$ (recall that z denotes the identity map of C). The fiber \mathscr{M}_z over a point $x \in U$ consists of one point $\phi_z = \text{evaluation at } x$. The fiber \mathscr{M}_z over a point $x \in \partial U$ is usually very large. Gamelin and Garnett [5] showed that a necessary and sufficient condition for \mathscr{M}_z to be a peak set for $H^{\infty}(U)$ is that

$$\sum_{n=1}^{+\infty} 2^n \gamma(A_n(x) \backslash U) = + \infty .$$

Here γ denotes the analytic capacity:

$$\gamma(K) = \sup\{|f'(\infty)| | f \text{ is analytic off } K, ||f|| \leq 1, f(\infty) = 0\}$$
.

When \mathcal{M}_z is not a peak set, they showed that it contains a distinguished homomorphism, ϕ_z , characterized by the property that it has a representing measure on \mathcal{M} with no mass on \mathcal{M}_z .

We say that an element $D \in H^{\infty}(U)^*$, a continuous linear map of $H^{\infty}(U)$ to C, is a first order bounded point derivation at a point $\phi \in \mathscr{M}$ if

$$D(fg) = \phi(f)Dg + \phi(g)Df$$

whenever $f, g \in H^{\infty}(U)$. D is called regular if $Dz \neq 0$, and a regular D is normalised if Dz = 1. We shall be concerned with regular derivations only, but we note that there are usually many derivations on $H^{\infty}(U)$ which annihilate z. For instance, let U be the open unit disc. Then Hoffman [7] has shown that the fiber \mathscr{M}_1 over the point $1 \in \partial U$ contains many homeomorphic images of the unit disc, on each

of which all the functions in $H^{\infty}(U)$ are analytic. So there is a superabundance of bounded point derivations at points of \mathcal{M}_1 , and each of these derivations annihilates z.

Inductively, we say $H^{\infty}(U)$ admits a regular normalized pth order bounded point derivation at $\phi \in \mathcal{M}$ if the following hold:

- (1) For each ν , $1 \le \nu \le p-1$, D^{ν} is a ν th order regular normalized bounded point derivation at ϕ .
 - (2) There is an element $D^p \in H^{\infty}(U)^*$ such that

$$D^{p}(fg) = \sum_{\nu=0}^{p} \left(egin{array}{c} p \ oldsymbol{
u} \end{array}
ight) D^{
u} f D^{p-
u} g \; ,$$

for all $f, g \in H^{\infty}(U)$, where $D^{0}f$ means $\phi(f)$.

 $(3) \quad D^p z^p = p!$

We observe that for $p \ge 1$ there cannot be any regular pth order bounded point derivation at a point $\phi \in \mathscr{M}_x \setminus \{\phi_x\}$. For such a derivation would have a representing measure μ on \mathscr{M} , and then $((z-x)^p/p!)\mu$ would be a representing measure for ϕ with no mass on \mathscr{M}_x , which is impossible.

THEOREM 5. Let $x \in U$, $p \ge 1$. Then $H^{\infty}(U)$ admits a regular bounded pth order point derivation at the distinguished homomorphism ϕ_x in the fiber over x if and only if

$$\sum_{n=1}^{+\infty} 2^{(p+1)n} \gamma(A_n(x) \setminus U) < + \infty .$$

Proof. If (5) holds, then certainly (4) fails, so \mathcal{M}_x is not a peak fiber and ϕ_x exists. By a device in Gamelin and Garnett's proof of the peak set criterion [5, p. 459, third paragraph], U can be shrunk a little to produce a compact set X with the properties:

- (1) $X \subset U \cup \{x\},$
- (2) $x \in X$,
- $(3) \sum_{n=1}^{+\infty} 2^{(p+1)n} r(A_n(x) \setminus X) < +\infty.$

By Hallstrom's Theorem [6, p. 156], R(X) admits a (normalized) bounded point derivation of order p at x. Choose a representing measure μ for this derivation with support on X and no mass at x. Then, for $\nu = 0, 1, \dots, p$ the measure $\mu_{\nu} = (\nu!(z-x)^{p-\nu}/p!)\mu$ represents a (normalized) ν th order bounded point derivation on R(X) at x, if $\nu \geq 1$, and μ_0 represents x and has no mass at x. Now any function in $H^{\infty}(U)$ which extends analytically to a neighborhood of x belongs to R(X), so for any two such functions, f and g, we have

(6)
$$\int fgd\mu = \sum_{\nu=0}^{p} {p \choose \nu} \int fd\mu_{\nu} \int gd\mu_{p-\nu} .$$

Since point theor sents F there wise, Theor each

pth of from $H^{\infty}(U)$ by do

 $|g_n^{(p)}(a)|$

of H^{∞}

To de and ψ admits D_{ψ}^{r} . T

In all D_{ϕ}^{p} , if write i

TH a seque

 Su_{i} vation $d^{p}(y_{n}, \phi_{i})$

 $Pr\epsilon$ 5, we note of Theorem

e is a

h order

10rmal-

th order deriva- $(x)^p/p!)\mu$, which

regular orphism

t a peak proof of shrunk

rmalized)
resenting
ass at x.
epresents
at x, if
function
v belongs

Since, as is well-known [5, Cor. 2.2], the set of all such functions is pointwise boundedly dense in $H^{\infty}(U)$, the dominated convergence theorem implies that (6) holds for any $f, g \in H^{\infty}(U)$. Thus μ represents a regular bounded pth order point derivation on $H^{\infty}(U)$ at ϕ_x .

For the other direction, assume (5) fails. If \mathcal{M}_x is a peak set there is no distinguished homomorphism, and nothing to prove. Otherwise, (4) fails, and we may, just as in Hallstrom's proof of his Theorem 1' [6, pp. 163-164], construct a sequence of functions g_n , each one in $H^{|\infty|}(U)$ and analytic in a neighborhood of x such that $|g_n^{(p)}(x)| > n ||g||_{\infty}$. Thus $H^{\infty}(U)$ cannot admit a p^{th} order bounded point derivation at ϕ_x . This proves the theorem.

We remark that there is at most one regular normalised bounded pth order point derivation at a distinguished homomorphism ϕ_x . For, from the proof of Theorem 5, any two agree on a dense subset of $H^{\infty}(U)$, and have representing measures with no mass on \mathscr{M}_x . Thus, by dominated convergence, they coincide.

9. The zero order Gleason metric $d^{\scriptscriptstyle 0}$ on the maximal ideal space of $H^{\scriptscriptstyle \infty}(U)$ is given by

$$d^{0}(\phi, \, \psi) = \sup \{ | \, \phi(f) - \psi(f) \, | \, | \, f \in H^{\infty}(U), \, || \, f \, ||_{U} \leqq 1 \} \; .$$

To define the higher order metrics, we take first the case where ϕ and ψ are distinguished homomorphisms at each of which $H^{\infty}(U)$ admits normalised regular bounded p^{th} order point derivations D_{ϕ}^{p} and D_{ϕ}^{p} . Then

$$d^{p}(\phi, \psi) = \sup \{ |D_{\phi}^{p} f - D_{\phi}^{p} f| | f \in H^{\infty}(U), ||f||_{U} \leq 1 \}.$$

In all other cases, we set $d^p(\phi, \psi) = +\infty$. Let $s^p(\phi)$ be the norm of D^p_{ϕ} , if this exists, otherwise $s^p(\phi) = +\infty$. For points $y \in U$ we will write y for "evaluation at y".

THEOREM 6. Let $p \ge 1$. Suppose there is a constant K > 0 and a sequence of points $y_n \in U$, $|y_n - x| \to 0$ as $n \to +\infty$, such that

dist
$$[y_n, \partial U] \ge K |y_n - x|$$
.

Suppose $H^{\infty}(U)$ admits a regular p^{th} order bounded point derivation at the distinguished homomorphism ϕ_x over x. Then $d^p(y_n, \phi_x) \to 0$ as $n \to +\infty$.

Proof. We shall deduce this from Theorem 3. As in Theorem 5, we may shrink U to a compact set X which satisfies the hypotheses of Theorem 3, with a smaller K. Thus there are representing meas-

ures μ_n for the $D_{u_n}^p$, and μ for $D_{v_x}^p$, with closed support in $U \cup \mathscr{M}_x$ and no mass on \mathscr{M}_z such that

$$\int f d\mu_n \longrightarrow \int f d\mu$$

uniformly for $f \in R(X)$. Again, since $R_0(X)$ is pointwise boundedly dense in $H^{\infty}(U)$, this means that $D_{y_n}^p f = \int f d\mu_n$ is equiconvergent to $D_{y_n}^p f = \int f d\mu$ for all $f \in H^{\infty}(U)$.

The analogous result when p = 0 (also a corollary of Theorem 3) is due to Gamelin and Garnett [5, 5.1].

REFERENCES

- 1. R. Arens, The maximal ideals of certain function algebras, Pacific J. Math., 8 (1958), 641-648.
- 2. A. Browder, Introduction to Function Algebras, Benjamin, 1969.
- 3. H. Federer, Geometric Measure Theory, Springer, 1969.
- 4. T. Gamelin, Uniform Algebras, Prentice-Hall, 1969.
- 5. T. Gamelin and J. Garnett, Distinguished homomorphisms and fiber algebras, Amer. J. Math., 92 (1970), 455-474.
- 6. A. Hallstrom, On bounded point derivations and analytic capacity, J. Functional Analysis, 4 (1969), 153-165.
- 7. Kenneth Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, 1962.
- 8. M. S. Melnikov, Structure of the Gleason parts of the algebra R(E), Functional Ana. Appl., 1 (1967), 84-86.
- 9. A. O'Farrell, An isolated bounded point derivation, Proceedings Amer. Math. Soc., 39 (1973), 559-562.
- 10. L. Zalcman, Analytic Capacity and Rational Approximation, Springer-Verlag Lecture Notes 50, 1968.

Received April 12, 1973. This research was supported in part by the National Science Foundation under grant GP-28574(X01).

Brown University