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We apply the Cauchy transform to derive results which relate approximation
problems in different Lipshitz norms, and in the uniform norm, to one another.

Let X be a compact subset of the complex plane C, and let 8 > 0.
This paper concerns approximation in Lip(8, X') norm by elements
of the module Z(X) #,,, which consists of all functions of the form

7o(R) + ()7 + -+ ra(2)E™,

where each r; is a rational function with poles off X. These modules
arise in a natural fashion when one attempts to study rational approx-
imation in Lip f norm. Our approach is based upon a novel use of
the Cauchy transform. We define the transform 7T whenever T is a
distribution with compact support; T is another distribution. The
Key Lemma (Sect. 2) states that for certain kinds of spaces V' of C®
functions, T annihilates V' - V# if and only if 7 annihilates V. This
fact, combined with certain estimates (Lemmas 4 and 6), leads to our
main results, Theorem 1 (Sect. 3) and Theorem 2 (Sect. 4). Theorem 1
shows how uniform approximation theorems yield Lip « approxima-
tion theorems (0 < o < 1). Theorem 2 shows that for many sets the
general problem of Lip 8 approximation for nonintegral 5 can be
reduced to the case 0 << 8 < 1. In formulating Theorem 2 we set up
the spaces ], (X, @) of bounded point derivations on the algebras
D™(X), and this leads to Theorem 3 (Sect. 5), which gives a condition
for failure of approximation in integral Lipshitz norms. The discussion
of Section 6 is concerned with a useful integral representation for
the Cauchy transform of an element of (Lip o)* (0 < o << 1).

* Supported by NSF Grant No. GP-33693X.
373

Copyright © 1975 by Academic Press, Inc.
All rights of reproduction in any form reserved.




374 ANTHONY G. O’FARRELL

The techniques developed here have wide application, to approxima-
tion in other norms and to partial differential equations.

2. PRELIMINARIES

We identify C with R% and denote by & and & the usual linear
topological spaces of complex-valued C® functions on C. Their duals
9’ and & are, respectively, the space of distributions and the space of
distributions with compact support [13]. The Cauchy transform ¢
of a function ¢ € & is defined by

#(z) = }T [ ?‘P.(?—)ZU- A%

for all € C, where #? is Lebesgue measure on C. The linear map
¢ — ¢ maps & continuously into &. This allows us to define the
Cauchy transform of an element of §’. For T €& and p € Z we set

T() = —T(@)-

Then 7€ 2’ (in fact it may be seen that T is a temperate distribution
[13]). We use the symbol @ for the operator

(6/6%) + 1(2/2y),

which may be applied to functions or distributions. We summarize
the basic properties of ~ and ¢ in a lemma, in which the various
assertions are either classical or easy.

- AN
LevMa 1. 8¢ = ¢ = 0p for o€ Z.
= PN
(i) 38 =S = 35 for Seé".
(i) The map ~: & — D' is a continuous linear injection with
dense 1mage.

We let &,, denote the space of analytic polynomials of degree m
or less, and

Given a compact set X C C, %(X) is the space of all functions fe &
which are analytic on some neighborhood of X, and (X)) is the space
of all functions f& & which coincide on some neighborhood of X

s,
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with a rational function (in either case the neighborhood may depend
on the function f). Observe that if Te & N Z(X)!, then spt T C X,
The most general form of Runge’s theorem states: If T e &', then
T | #(X) if and only if T | R(X). It is readily seen that a given
distribution T € &' annihilates %(X) if and only if spt T C X. Hence
T | R(X) if and only if spt T C X.

Levmma 2. Let V be a linear subspace of & such that for each ve V
the following three conditions hold.
(a) dwel,
(by Zovel,
(c) There exists neZt = Z N {n = 0} (depending on v) such
that (3)"v = 0.
Then for every T € & the following are equivalent.

a TV
Q) 3T 1 V+ Ve
Proof. Suppose (1) holds, and let u + ZvelV 4 £V. Then
(@T)(u + 3v) = —T(0u + v + £ 0v) = 0 by (a) and (b), hence (2)
holds.

Conversely, suppose (2) holds, and let ve V. We claim that for
any me Z*, (Z)y™(0)"v e V and

Tv = [(—1)"/m!] T[(Z)"(B)"2]-

The claim is established by induction on m. Clearly it is true for
m = 0. Suppose it holds for a given m > 0. Then by (b), Z0(z™ i™v) =
mzm gmy + FmHl gmtly € ¥, hence g™+ gmtly e I, and

0 = T[B(Em+ 5my)]
= T[(m + 1) g™ &™v + g™+ o™+12]
= (—1)(m -+ 1) T(v) + Tz Gmiig),
so the claim holds for m - 1 also.

Taking m = n (cf. (c)), we conclude that Tv = 0. Thus T | V,
and (1) holds.

Key Levmma.  Let V be a subspace of & which satisfies the conditions
(a), (b), (c) of Lemma 2. Let T € &', X C C be compact, and Z(X)C V.
Then
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(1 T 1 V4 Vzif and only if
2 T17V.

Proof. Suppose (1) holds. Since Z(X)CV, it follows that
spt TC X, and in particular T e &, so that Lemma 2 applies, with
T replaced by 1" Since 7 = T, (2) holds.

Conversely, suppose (2) holds. Then T | #(X), so spt T C X,
and thus T € &'. Applying Lemma 2 again, we see that (1) holds.

3. Lir o, 0 <a<1

If f is a complex-valued function defined on a subset E of C,
reR, and 0 < a << 1, we set

w(f, E,7) = sup{| f(s) — ()] : 3, we B, | v —w ]| <1},
[ flle.e = sup{r—2w(f, E,r) : r > 0},

Lip(e, B) = {fe CF :{ fll,. < oo},

lip(e, E) = {f € Lip(e, E) : r—w(f, E,7)— 0 as r | 0}.

When endowed with the norm

Hfllae =11 fllae + 11 lluks

Lip(e, E) becomes a Banach algebra. Here || f|, ; is the uniform
norm. The object of this section is to apply the key lemma to approxi-
mation in Lip(a, X) for 0 << « << 1 and compact X.

If V C Lip(a, X), then [V], 4 (or just [V7],) denotes the closure of I
with respect to the norm | -||., and [V], y denotes the uniform
closure.

If T is an element of Lip(a, X)*, the continuous dual of Lip(a, X),
then the restriction 7" | & is a distribution of order 1 with support in X.
Hence we can form (T | &)* € 2’, and we abbreviate this to 7. If
T = 0, then by Lemma 1 (iii), T annihilates &, and hence T an-
nihilates lip(e, X), since & is dense in lip(a, X) (for 0 << o << 1).
Also, Runge’s theorem implies that 7 annihilates Z(X) if and only
if T annihilates %(X), hence by the separation theorem, [#], = [#], .

The following result is essentially classical [2, 6, 10, 18].

Lemma 4. Let O < o << 1. Then there is a constant K, which
depends only on «, such that

(¢ lee < K@ llyd

whenever ¢ € 9 and d = diam spt ¢.

i A
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Combining Ll.emma 4 and the F. Riesz representation theorem we
obtain a representation of 7' for T e Lip(a, X)*. A more refined
version is obtained in Section 6.

LEmMMma 5. Let 0 <a <1, let XCC be compact, and let
T e Lip(w, X)*. Then there is a complex Borel regular measure p on C
such that | uw | (Y) < o for all compact Y and

Te = | o du
whenever ¢ € J.

Now we can state and prove the main result of this section.

THeOREM 1. Let O < o << 1, let me Z+, and let X C C be compact.
If
[22,.). = C(X),

then
(Bl = lip(a, X).
Proof. Suppose
(2P, = C(X).
Let TeLlip(e, X)*, T 1 22,,,,.- Then by the Key Lemma,
T | #2,,, and by Lemma 5, T is represented on 2 by a finite Borel

regular measure supported on X. Hence 7' =0, and so 7' |_lip(a, X).
It follows that 22, ., is dense in lip(a, X).

Exampre 1. In case m = O the theorem states that

[Z]. = C(X) (*1)
implies

[Z + RZ), = liple, X) (0 < a < I). (*2)

The #% cannot be removed, in general. In [15] a measure theoretic
condition is given which is necessary and sufficient for

[#]. = lip(, X) (*3)

to hold, and by using this condition an example is constructed in
which (*1) holds and (*3) fails.
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ExampLE 2. Vitushkin [19, 8, 10] has given a necessary and
sufficient condition for (*1) to hold, in terms of analytic capacities.
Using this, one can often check the validity of the hypothesis in case
m = 0. In case m > 0 the problem of determining for which X

one has
(%P} = C(X)

has not been studied at all, as far as I know. Here we give an example
of an X such that

[Z + #%], = C(X), (*4)

whereas (*1) fails.

By combining {8, chap. VIII, Sect. 5.1; and 1 or 12] we see that
there exist compact sets X C C such that (*1) fails and yet #(X) is
dense in L¥(X, £?) in L} X) norm (here L3(X) is the usual space of &2
measurable functions f on X such that [|f[?d%? < ). Let X be
such a set. We will show that (*4) holds.

Suppose p is a finite Borel measure on X and p | # + #%. Then
for 1 < ¢ < 2 we have

[ L L4 1e d.z?]”" <| [ ! L —‘ffgi‘:-’_(zil)gq d,§f2(z)]”q

SE LD ) ) < M,

oo —=z{?

where M depends on diam X and ¢. Thus g € L32(X, #?) N 2+, and
since # is dense in L3(X) and L3} X)* = L3/2(X) we infer that 4 = 0,
hence g == 0. Thus (*4) holds.

It is worth noting that the annular Swiss Cheese of Roth [16] has
the property that

[(Z]. # [# + %%,

since

(T/64)(1 = * — 1) ¢ [#]., .
However, it is not clear whether or not (*4) holds for this X.
ExampLe 3. It is easy to see that if int X % &, then
(F], # [RP\]u +# [RP5] + -
ExamprLE 4. If C\X is connected, then

['@]u = [@]u ) [‘%Ju = [‘@]u s
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and Mergelyan’s theorem [8] tells us that
[Z]. = C(X)

if and only if int X = @. Thus ¢f C\X 2 connected and int X = @,
then
[# + P5], = lip(e, X) (0 <a< 1)

4, Lip B, B > 1

The space Lip(, C) (where 8 =n 4 o, 1 <neZand 0 < a < 1)
consists of all those bounded continuous functions on € which have
bounded continuous partial derivatives of all kinds up to and including
order n, and whose nth partial derivatives all belong to Lip(a, C).
The norm on Lip(B, C) is

= T |

itign

o
| oxt oy’

+ X

wC  iti=n

o€
If X is compact, then
I(X) ={feLip(8,C) : f = 0 on X}
is a closed ideal in Lip(B, C), and we define
Lip(8, X) = Lip(B, C) I(X),

with the quotient norm. We may think of Lip(8, X) as a space of
functions on X: a function f on X corresponds to an element of
Lip(B, X) if f has an extension in Lip(«, C). (For a concrete description
of Lip(B, X) in terms of local properties of f, see [18, Chap. VI].)

When we wish to distinguish, we will denote the coset g + I(X) e
Lip(B, X), corresponding to an element g € Lip(8, C), by g.

The space lip(B, C) consists of those functions fe Lip(B, C) whose
nth partial derivatives belong to lip(e, C), and lip(8, X) is the
subspace of Lip(8, X) defined by

lip(8, X) = [lip(8, C) + I(X)]/1(X).

Thus a function f defined on X corresponds to an element of lip(8, X)
if f has an extension in lip(8, C).
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We denote the quotient norm on Lip(B, X) by | flls x - Clearly
| /lia,x is dominated by the C**1(K) norm of f whenever fe & and K
is an open disc containing X. The C**{(K) norm of f is the sum

ai+1f l
oxt oy ll, &

)

i4fgn+l

Using this fact and a smoothing argument we deduce that
[€1s.x = lip(B, X)
for nonintegral B. In case 8 = n + 1 € Z we denote
DMX) = [l 1 -

Then D X) is a subalgebra of Lip(n + 1, X). Recall that if 4 is
a complex algebra with unit, | is a maximal ideal of 4, and 0 << p € Z,
then a pth order derivation on A at ] is a linear functional P: 4 — C
which annihilates

J?+C.
For I < m € Z, the maximal ideals of the algebra D™(X) are the sets
K(a) = {fe D™(X): f(a) = O},

corresponding to the various points a € X. A derivation on D™(.X)
at K(a) is called a point derivation at a. For | << m € Z we define

Jm(X; @)

as the vectorspace of bounded mth order point derivations on D™(X)
at a.

At an isolated point of X, J,(X, a) = {0}. At an accumulation
point, the dimension of J, (X, a) lies between m and im(m -+ 3),
and either value may be attained. We say X is m-thick if

dim ], (X, a) = im(m + 3)
whenever a € X. If this is the case, then all the partial derivatives

8i+jf
fﬂ’m(a% (fed)
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corresponding to ¢ + j < m, extend to continuous linear functionals
on D™(X). We denote the extensions by the symbols D;; - (a). We
say X is uniformly m-thick if each of the maps a — Dj; - (a) is bounded
on X, i.e. if there exists a constant M > 0 such that

| Disf(a)] < M| flimx

whenever ¢ + j << m, a € X, and fe D™(X). For convenience we say
that every compact set X is uniformly O-thick. It is not hard to see
that if X is uniformly m-thick, then Dy; f(a) varies continuously with
a for fixed 7, j € Zt with 7 + j << m and fixed fe D™(X).

If every nonempty relatively open subset of X has positive area,
then X is uniformly m-thick for every m € Z+. The product C X C of
any linear Cantor set with itself is uniformly m thick for every m. Thus
there are uniformly m-thick sets with Hausdorff dimension zero.

It is possible to push through the ensuing results for certain sets X
which are not m-thick, notably for C? curves, but the simplest blanket
assumption is m-thickness.

Lemma 6. Let 0 << f¢7Z and d > 0. Then there is a constant
K > 0, depending only on B and d, such that

f 93 ”B+1.C < K| 90”5.1:

whenever o € 9 and diam sptp < d.
This fact is widely known. It was shown to the author by C. Earle.
It appears in [2, pp. 9-15] in case 0 << 8 < 1.

THEOREM 2. Let X C Checompact,0 < mneZ,m<<B<m-+ 1.
Consider the two conditions:
1' ['%'@n]f? = hp(B’ X)7
2. [RZplen = lip(B + 1, X).

If X is uniformly m-thick, then (1) implies (2). If X is uniformly (m + 1)-
thick, then (2) implies (1).

Proof. Suppose X is uniformly m-thick, and (1) holds. Let
T e Lip(B + 1, X)* be an annihilator of RP,., . Then T is supported
onX, T | %22, , and

[T < THenn Kl @lls.c
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whenever ¢ € 2, by Lemma 6. Here K depends only on 8 and diam X,
which are fixed in the present discussion, so T is continuous with
respect to the Lip(8, C) norm. .

Since X is m-thick, the Whitney—Calderén-Zygmund extension
theorem [18, Chap. VI] implies that there exists a continuous linear
map S: Lip(B, X) — Lip(8, C) such that

(a) Sf = fon X whenever fe Lip(8, C), and
(b) Sfelip(B, C) whenever felip(f, X). Thus for fe Z we

have
(T oS)FI < Tl Slisll fllox

so that (T - S)| 2 extends to a continuous linear functional on
Lip(B, X) (nonuniquely; the extension is only determined on

lip(8, X)). .
Fix ge 22, . We wish to show that (1'» S)(g) = 0. Fix ¢ > Q,

and consider the function % = 5S¢ — gelip(B, C). The various
derivatives D /A(a), corresponding to 7 4 j < m, vary continuously
on C, and the top order derivatives are such that

[Dysh(a) — Dih(b)]/} @ — b | (*)

is continuous on C X C. Since % vanishes identically on X and X
is m-thick, it follows that all these derivatives vanish on X, while the
functions (*) vanish on X X X. Thus there is a closed neighborhood
N of X such that

1S§ —glenw <e

We may assume NV is also m-thick, and apply the Whitney—-Calderén—
Zygmund theorem to obtain a function ke Lip(B, C) such that

=S8 ~gonN

and
” }3 HB,N <Z K1€3

where K| is a constant which depends only on 8 and diam N. Thus
(T $)F1 =1 T(SE~g)l = | Th| <1 Tllp Kse,
and since this is true for every ¢ > 0,

(T 5)g) = 0.
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Hence T oS is an annihilator of #%, in Lip(B, X)*, and so
T'o S = 0onlip(8, X)by the separation theorem and assumption (1).
Next we claim that 7 = 0 on 2. To see this, fix p € 2 and € > 0.
The function S — ¢ belongs to lip(B, C), and as above there is a

function & € lip(B, C) such that 2 = S¢ — ¢ on a neighborhood of X, -

while || Al ¢ << Kje. Then
| T@) = | T(5¢ — @)l = | Th| < || Tl| Kse.

The claim follows.

Hence T' | &, so T | &, and T | lip(8, X). So (2) follows by

the separation theorem:.
The second assertion is proved in a similar way, except that the
trivial estimate

| opllse < 2llelsire
is used instead of Lemma 6. We omit the details.
Cororrary. Let X CC be compact, 0 < o < 1, ne Z*. Suppose

[#2P,). = lip(a, X).
Then
[22 1i)iee = liD(1 +- o, X),
and, a fortiori,
(%21} = DY(X).

ExamprLE 5. If X has zero area, then
(], = lip(e, X)
(cf. [15] or Sect. 6), hence
(% + Rz], = DY(X).
On the other hand there are many sets X with zero area for which
(%], % DY(X).

In fact # is dense in DYX) if and only if X is a subset of a finite
disjoint union of simple C* curves {14].

ExampLE 6. If [#], = C(X), then

(% + R% + R, = DY(X).
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I do not know an example for which [%], = C(X) and [Z + #Z], #
DY X).

ExampLe 7. Let X be such that
[Z), # (2 + A7), = C(X)

(cf. Example 2). Then
[#7), = DX).

There are sets X of this type which are 1-thick, and for these X one
can show that

(% + R=), # DYX).

(For more on this example, cf. Sect. 6.)

5. J.{(X, a)

In this section we give a result concerning approximation in
integral Lipshitz norms.

TueOREM 3. Let X be compact in C, let m,jeZ*, j < m, and
suppose there exists a point a € X such that

dim ]m(X’ a) > (] -+ 1)”1 - %](] - l)'
Then
[%,@j]", # D™(X).

Proof. For a function f e &, consider the polynomial

)= % 3 (1) b (o a(y - ay

r=1 5=0 Ox® oy

where a = a; -+ ia, . The linear function = maps & onto the space
P,, of polynomials in (x — a,) and (y — a,) of degree m or less with
no constant term. We may regard P,, as a subspace of &, and then we
may write Tf = Tn(f) whenever fe & and T is a continuous mth
order point derivation on & at a. Let

A ={fed:|x—al"f(z)>0as|z—ai{l0,zeX}
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Then " is a subspace of & and it is easy to see that
A =N{EnkerT:Te J (X, a)}

This means that every T € [, (X, a) factors through &/ . Let

K =4 NP, . Then ], (X, a) is isomorphic to the dual of P, /K.
Hence

dim(P,,/K) > (j + Dm — §5(j — 1) = , say.
If fe RP;, then ()t f(a) =0, ie.

J+1 . 41
TN Y@
2 ( ’ ) vt axr gyt 0.

r=0
It follows that the dimension of #(#2%;) is 7. Hence the dimension of

n(.@@,») + K
K

W =

does not exceed 7, so that W is a proper subspace of P, /K. If we now
choose T € J, (X, a) corresponding to a nonzero annihilator of W in

(P,./K)*, it follows that 7 is a nonzero annihilator of Z2; in D, (X)*.
Hence #2; is not dense.

ExampLE 8. We observe that the hypotheses are fulfilled with
j=m —1 for any compact set X with #¥X) > 0, because the

dimension of J,(X, a) is 3m(m -+ 3) at every point a of full area
density of X. Hence, if #%X) > 0, then

(AP} + D™(X).

ExampLE 9. It is possible that there exist first order bounded
point derivations on D X) which do not extend continuously to
DY(X). Let f be the function defined by

~ {0, —1 <x <0,
J = e 0<x<1,

and let X = {x 4+ if(x) : —1 << x <{ 1} be the graph of f. Then
Ji(X, 0) is the span of {D,}, whereas J,(X, 0) is the span of

{DI’DQ?DZO}'
Hence

[Z); # D*(X),
whereas [#], = DY X), since X 1s a C! curve.
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6. REPRESENTATION OF 7'

In this section we show that for T € Lip(o, X)*, 0 < o << 1, the
measure 7' is absolutely continuous with respect to area #2, and we
give an explicit representation for 7. We show how this representation
may be applied to give further results on approximation.

Fix 0 <« <1, X compact in C, and T e Lip(x, X)* N C+. If
felip(e, X), then the function

N o f@ =)
©f)% ) ===
is continuous on X X X, and p is an isometric injection of lip(e, X)/C
into C(X x X). By the Hahn-Banach theorem and the Riesz
representation theorem, there exists a finite complex Borel regular
measure p on X X X such that

If = J of dp

whenever f € lip(a, X). This construction goes back to De Leeuw [5].
Let o € Z. Then

P(x) — ¢(y)

vy du(x, 3)

T(p) = —T(¢) = —

. P(O(x — ) 2
= =[] Tt e =y Q)

= — [ o0 || Cr =S dute )] 420,

The use of Fubini’s theorem is justified by the fact that we may put
in absolute values in the second line, and get something bounded by
K|, , where K depends only on o and diam spt ¢ (this estimate
is essentially the same as Lemma 4). In fact, this step is permissible
for ¢ e L®(¥?) with spt ¢ compact. Thus the expression in chain
brackets is in L}, (Z?), regarded as a function of {. If we denote
this expression by T({) (abusing the notation), we have

o) = — [ #0) () d£7L.
Observe that if [ ¢ X, € &, and

Plx) = 1j(x — )
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for all x near X, then T() = T(}). Hence if T | %#(X), then
T({) = 0 for { ¢ X. This provides an elegant proof of the extended
Hartogs—Rosenthal theovem: If ¥ X) = 0, then [#], = lip(a, X).
The first application is an extension of a theorem of Davie [4].
Davie’s theorem asserts that for any compact set X, with boundary Y,

we have
[A(X) + Z(Y )lu,y = C(Y),

where A(X) denotes the collection of all continuous functions on X
which are analytic on the interior of X. We strengthen this result in
three ways: We replace A(X) by a smaller space B(Y), replace the
uniform norm by the larger Lip « norm, and throw away X. If g
is any bounded Borel function on € such that the set

{xeC:g(x) £ 0}
1s bounded, we define
. 1
i@ =1 [ 2z
From Lemma 4, and the fact that 2 is weak star dense in L®(#?), 1t is

clear that § € lip(e, C) for 0 < a << 1. For T € Lip(a, CY* N & N C+
it is easy to see that the formulas

T(§) = —1(g) = [ 1(=) gl=) d L

are valid. For any compact set Y C C we define the vectorspace B(Y)
by setting

B(Y) = {g: ¢ is a bounded Borel function, g = 0 off Y}.
THEOREM 4. Let 0 < o < 1, and let Y C C be compact. Then
[B(Y) -+ B(V)]..y = lip(, ¥).

Proof. Let Te Lip(a, Y)*, T | B(Y)+ #(Y). Then T(z) =0
for z € C\Y. Further, for every bounded Borel function g which
vanishes off Y, we have

0 = 7(3) = — [ 1() () dL7%,

so that T(z).= 0 for #? almost all z€ Y. Hence T = 0, so that
T | lip(s, V).
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The second application shows a relation between Lipshitz approxi-
mation and LP approximation. Recall (Example 2) that gelL{,,
whenever p is a measure with compact support and 1 < ¢ < 2. We
will show that an analogous result holds for the transforms of elements
of Lip(a, X)*. ‘

Let T e Lip(e, X)* (0 < o < 1, X compact), let T | C, and let p
be a measure on X X X which represents 7. Then for ¢ > 1 we have

I leoo = [ 1 70 azy)”

=1,

< [le—yp

(x—)ix—y|™ ¢ 1a
T =) y)l d|

f AL
x [L—xt L=yl

a1 )

In case
1 < g < 2/(1 +a),

the expression in chain brackets is bounded by
Klx—yl,
uniformly in (x, ), and thus 7 e LYX). Let
1 <q¢ <21 + o),
(1/p) + (lg) =1,

and suppose AP, is dense in LP(X). Then, applying the Key Lemma,
we see that Z2,, ., is dense in lip(a, X).

As an example, if X is chosen that [#], ¢ C(X) and £ is dense
in L3(X), then

(%) # [Z + R=]yys = lip(, ©)-

Applying the corollary to Theorem 2 we obtain [#2,]; = DY X).
If X is chosen to be 1-thick, then [#2,], # DY X)since [Z], # C(X).
It follows that [#], # [#£%,];, so finally we obtain

(R), # [ + A5, # [R + RE + A=), = DV(X).
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