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LIP 1 RATIONAL APPROXIMATION

ANTHONY G. O'FARRELLfY

: ABSTRACT

Let X be a compact subset of the complex plane C. We prove that every C* function is the limit
in Lip (1, X) norm of a sequence of rational functions if and only if X is a subset of a finite union
of disjoint simple C! curves.

1. Let X be a compact subset of the complex plane €. The space Lip (1, X)
consists of all those continuous complex-valued functions f on X for which the
norm

Lfx)=f I

1 bx = sup {2

:x,yeX,xaéy}

is finite. When given the norm

I e = 1+ 1 e x

where [ f ||, denotes the supremum of |f| on X, then Lip(1, X) becomes a Banach
algebra. This paper concerns the closure in Lip(l, X) of the algebra Z(X) of all
rational functions with poles off X, It is obvious that the closure R'(X) of £ is a
subalgebra of the closure D*(X) of the space C 1(C) of all continuously-differentiable
functions on C. Our main result gives a necessary and sufficient condition for R*(X)
to equal D'(X).

TueoreM A. RY(X) = D*(X) if and only if X is a subset of a finite union of dis-
joint simple C* curves.

By a simple C* curve we mean either a simple closed C! curve or a simple open
C! curve (a simple closed C! curve is the image of a periodic C* function¢: R -~ C
which has non-vanishing derivative and is one-to-one inside each period; a simple
open C! curve is the image the closed interval [0, 1] under a one-to-one C! function
¢ : R — C which has non-vanishing derivative).

The reader will find that the proof is much more accessible than is usual in rational
approximation theory, All we use is some elementary function theory and a little
geometry.

2. Letae X. We denote by Tan (X, a) the set of unit vectors « which are obtained
as

L X,—
w= hm —r"
pe ot {X— Yl

with x, — a, y, = a, x,€ X, y, € X (this set is larger, in general, than the ““ Tan (X, @)™
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of [3]). We shall prove the theorem by showing that the following three conditions are
equivalent, for a compact set X < C:

(1) RY(X) = D'(X);
(2) Tan (X, @) has at most one-dimensional span (over R) for each ae X;
(3) X is a subset of a finite union of pairwise disjoint simple C' curves.

To see that (1) implies (2), suppose (2) fails, so that there exist ae X and u,
veTan (X, a) with v # + v. By considering difference quotients it is easy to see that
the directional derivatives

{u, Df (@3, <v, Df(a),

defined for fe C!(C), extend to unique bounded point derivations on D!(X). Let
us denote these derivations by the symbols D, and D, Then the continuous
linear functional L, defined by

Lf=vD,f—uD,f

whenever fe D'(X), annihilates & but not D!(X). Hence (1) fails.

Before proving that (3) implies (1) we make two remarks. First, Runge’s Theorem
works in Lip (1, X) norm, i.e. for any compact X = C, Z£(X) is dense in the space
A(X) of all functions fin C*(C) which are analytic on some neighbourhood (depending
on f) of X. In fact, the Riemann sums used in the usual proof of Runge’s Theorem
constitute a normal family on a neighbourhood of X, and hence converge in the C!
topology on that neighbourhood. Second, if X is a C! curve, then D*(X) coincides
with the usual manifold space C'(X), consisting of those continuous functions f
on X whose derivative

_t_i_]:
ds

with respect to arc length is also continuous on X. Moreover the Lip (1, X) norm
I f I+ I f |l is comparable to the C!(X) norm

2l

Now suppose X is a closed C* curve, and let fe C1(X). Then

I+

4
dz
is a continuous function on X, where
g _dr ()
dz  ds \ds

Thus (cf. [1; 4]) we may choose a sequence r, € Z such that

af <_1_
n

T dz

"n
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Each r, may be assumed to have at most one pole, and since

) Y gz =o,

g

each r, may be assumed to have residue zero inside X. Hence there are functions
s, € % such that

We may assume that each s, takes the same value as f at some point ae X. We have

ds, df
ds ds

dz

dz\|ds, df
ds

LADE
dz dz n

and |s,—f| < I(X).1/n, where I(X) denotes the length of X. Hence the sequence
{s,} converges to fin C'(X) norm, and hence in Lip (1, X) norm. Thus R*(X) = D*(X),
whenever X is a simple closed C! curve.

Now suppose X is a union of a finite number of disjoint simple C* curves, say

X=X,uX,u..ulX,.

Let y; denote the characteristic function of X,;. Each y; has an extension in @(X),
and hence each y; is a limit of rational functions in Lip (1, X) norm. Fix fe CcHC)
and & > 0. Since each X is a subset of a closed C* curve, there exist rational functions
T'1y eees 2y +ees Iy With poles off X, such that

ff=rlx <e

where |-y, = I o, x,+ I |1, x, is the Lip (1, X;) norm. Also, there exist functions
s; € #(X) such that

lxi=s:llx < e/M

where
M = 1+e+1f Ix+ ¥ Il
Let
d = inf {dist (X;, X;) : i # j}.
Then

[Ga—sdf x < l—sidlx 1/ lx <&
ls:(f=rdll, x < (1+2)e,
Isi(f=rdlls, x < (1+e)e(l+2d77),
ls:(f=rdlx < (1 +&)e2+2d™Y),

“f— i r; Silf < Z‘.: ”(Xi—si)f,nx'l".g: fls:(f=r)lx
=1 x =1 i=1

< me+m(1+2g)e(2+2d)71).
Thus R'(X) = D'(X), and we have shown that (3) implies (1).
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3. It remains to show that (2) implies (3). This is a purely geometric fact, It is
equally valid in R", as will be clear from the proof.

Suppose (2) holds. Given ae X and ueTan (X, a), there is a function &(r),
which decreases to zero as r decreases to zero, such that

x—
ET D
or ™
TV L <o)
[x—y|

holds whenever x, ye X with [x—a] <r, [y—a] <r. It follows that there exists a
closed disc D centred at a such that the orthogonal projection of D n X on the line

{au: aeR}

is invertible, and that the inverse is in Lip 1 [3; (3.3.5)]. Thus there is a one-to-one
Lip 1 map F defined on a subset ¥ of R with values in C such that

DAnX=imPF.

F has a derivative F'(¢) at each accumulation point ¢ of ¥, in the sense that

1
u—1]|

|[F)—F(t)—F'(t) (u—1)| - 0

as Ju—t| | 0 with ue Y (in fact, the above expression is bounded by |[F, | e[| F,|
Ju—1t]]). Also (*)implies that F’ is continuous on its domain. By Whitney’s Extension
Theorem ([3; (3.1.14)], [7; Ch. VI]), there is a function G e C~*(R) which agrees
with F on Y. Since F inverts a projection, |F'| = 1 on dom F’, hence G’ does not
vanish on a neighbourhood of dom F’. Thus G may be modified to produce a function
H e C™1(R) which agrees with F on Y, and has non-vanishing derivative. Thus there
isaClcurve I'suchthat Dn X = I'n X.

We have proved that to every point a e X there corresponds a closed disc D{(a)
centred at g and a C* curve I'(@) = D(a) such that X n I'(¢) = X n D(a). Clearly,
we may also require that I"(a@) meet bdy D(a) in exactly two points, and that the angles
of intersection exceed #/4. Now choose a finite collection of these discs covering X,
say D,, D,, ..., D,,, and let the associated C* curvesbe T'y, T, ..., T,. TakeI';! = T,.
Modify T',, if necessary, so that I', n bdy D, contains at most two points, without
disturbing the fact that X n I’y = X n D,. This is always possible since

InnXnD =T,nXnD,,

and I'; nbdy D, contains two points. Then set T',! = clos(I';\D,), so that I',!
is contained in a union of at most two disjoint C* arcs. Modify I'; so that each of
the sets I';s mbdy D, and T'; nbdy D, contains at most two points, and form
Iyt = clos (T;N\.D;\.D,). Then I';* is contained in a union of at most four disjoint
C! arcs. Continuing in this way we obtain a collection T',%, T',2%, ..., T'y/* of C! arcs,
with M < 2™"1, such that X < (JT'/%, and T';> n T} contains at most two points

fori # j. Ifae I';? o IT'/?, there are two possibilities.
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€Casel. Tan(T2nX,a)nTan(T* "X, a) = . In this case one of the arcs
may be shortened a little so that they no longer intersect at a, without disturbing the
property that X = () T2

Case 2. Tan (> n X, a) = Tan (I;> n X, a), In this case the two arcs may be
joined together at @ to form a new C* arc (they must approach a from opposite sides
on account of the condition that the angle between I'; and bdy D, exceeds n/4).

Thus, finally, we obtain a finite family {I";3} of pairwise disjoint simple C* curves,
such that X < (T}, and so it is proved that (2) implies (3).

4. To illustrate the result, we give an example of a compact curve X which has a
unique tangent direction at each point (in the classical sense) but is such that
RY(X) # D*(X). Letf(x) = x*sin x~2, and set

X={x+if(x):0<x<1}.

Since f'(x) exists for 0 € x € 1, X has a tangent at each point. Also, since f'(x)
is continuous and unbounded on the interval {x: 0 < x < n}, no matter how small
n > 0 may be, it follows that every ueC with Ju| = 1 belongs to Tan (X, 0). Thus
condition (2) fails.

5. There is a higher order version of Theorem A. The space Lip (#, C) consists
of .those bounded complex-valued functions on C which have bounded partial
derivatives up to order n—1, and whose (z—1)th order derivatives belong to Lip 1.
With the norm

ai+ Jj f an— 1 f
dx' oy’ + oxt oy’

17 = i+j§n—1 w  i+s=n—-1 ¢

Lip (#, C) becomes a Banach algebra. For compact sets X < C., the set
IX)={felip(n,C):f=00onX},
is a closed ideal in Lip (n, C), and we define
Lip (n, X) = Lip (n, O)/I(X).

With the quotient norm, Lip (#, X) forms a Banach algebra. It may be regarded as a
space of functions on X. There are more concrete descriptions of the space in terms
of local properties of the functions [7]. We define D"(X) as the closure of C*(C)
in Lip (r, X) and R"(X) as the closure of Z(X).

THEOREM A’. Let X be a compact subset of C and let n be a positive integer. Then
R*(X) = D"(X) if and only if X is contained in a finite disjoint union of simple C*
curves.

The proof of this result is only slightly more complicated than that of Theorem A,
and so we omit the details.

The approximation problem in fractional order Lipshitz spaces is radically different
and will be treated elsewhere,
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