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1. Let X be a compact subset of the complex plane C, and let ®(X) denote
the space of € functions on C which agree on a neighbourhood of X with
rational functions. For 0 < m ¢ Z, let ®,, denote the space of conjugate-analytic
polynomials of degree at most m. Then for 8 > 0, [R];.x (the closure in Lip (8, X)
of ®(X)) is a Banach algebra, and [® ®,]s is a finitely generated [®]s-module.
These modules arise naturally in the study of rational approximation in high
Lipschitz norms [7]. The purpose of this note is to show that [®R®,.)s is locally
determined in a certain sense, for 8 ¢ Z. Precisely speaking, the result is as follows:

Theorem. Let0 < 8¢ Z, 0 =< me Z, and let X be a compact subset of C.
Suppose { : X — C and every point a ¢ X has a closed netghbourhood U such that

felR{X M U>-O_):n]ﬁ.xrxv .
Then
fe[®RX)Puls.x -

The first result of this kind was Bishop’s theorem (3, p. 51] that the uniform
closure on X of ®R(X) 1s local, for X compact in C. Kallin [4] showed that this
fails for sets in higher dimensional C". Weinstock [9] proved a localness theorem
for approximation by solutions of elliptic partial differential equations. He
worked in the space of germs of C* functions, where & is less than the order of
the operator. These germ spaces are unsuitable for approximation at orders at
and beyond the order of the operator. The localness result of the present paper
is the first which involves approximation beyond the order of the operator. We
conjecture that Weinstock’s results can be extended to all nonintegral orders
if one formulates them in terms of Lip 8 spaces instead of germ spaces.

The question whether [® @®,.]; is local for integral 8 > 0 remains open. There
is some evidence in favor of localness: the necessary and sufficient condition for

&l = [&h
which 1s given in [5], is a local condition.
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Our theorem raises a natural question, namely: give a local description of
R(X)®.s

for 0 < 8 ¢ Z. Some work on this question has been done [6, 7], but there are
more questions than answers.
I am grateful to T. Gamelin and J. Garnett for their helpful comments.

2. There are several equivalent ways of thinking of the space Lip (8, X)
[7, §4; 8, Chapter VI]. For our present purpose it is simplest to think of it as the
space of all functions on X which have extensions in Lip (8, C). The norm of an
element f ¢ Lip (8, X) is ||flls.x = inf {|lglls.c : ¢ e Lip (8, C), ¢ = fon X}|. Here
llglls.c means

6i+ig 617g
0sTsn 11027 3y 1. + i+:'2=p 9z’ oy’ |’
where 8 = p + «, pe Z,0 < a = 1, |||} is the uniform norm, and
[1h|l« = sup {lh—%)—tﬁla(v—)! tu,veCu # v}-
U —v

Lip (8, X) is not the same as the space of germs on X of functions in Lip (8, C).
Lip (8, X) itself is local, in the sense that if f : X — C is such that every point
has a closed neighbourhood U with f ¢ Lip (8, X M U), then it follows that

feLip (8, X). For, let U, , U, -+, U, be a covering of X by closed balls such
that fe Lip (3, X N\ U,) fori = 1,2, -+, n. For each ¢ there exists a function
f.eLip (8, C) such thatf, = fon X M U, . Select o, , 0, -+ -, ¢. & D (the space

of C* functions on C with compact support) such that spt ¢, C U, and D=1
on a neighbourhood of X. Let

g = Z‘Pifi-

i=]

Then ¢ ¢ Lip (8, C) and it is easy to see that ¢ = f on X.
Thus, if { satisfies the hypotheses of the theorem, then f & Lip (8, X), so we
might as well assume from the start that f ¢ Lip (8, C).

3. We divide the proof of the theorem into four steps.
I. Let & denote the space of C* functions on C, and set

®n(X) = {he&:(3)"""'h = 0 on a neighbourhood of X}
where d denotes the operator

9

d .
6x+zay'

Runge’s Theorem |3, p. 28] carries over to Lip 8 norm, and states that

[61]5 = [(ﬁo]ﬁ .
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We claim that ®&,.(X) = &(X)®, , so that by Runge’s Theorem
[® @) = [G]s -
To see this, fix he D N @, (X). Then by = 8)"he DN @W(X). Also
@)™ h — zh,] = —23h, = 0O

il

on a neighbourhood of X, so &, = (8)"7'h — zh, ¢ @y(X). Continuing, we find
that h,,., , defined by

- —m—1
z"h, 2" hy

m!  (m— 1D

belongs to ®e(X), v.e. h e Ro(X)®,, . This suffices.

hm+1 = h - Ehm

I1. For ¢ ¢ D, the Cauchy transform ¢ ¢ & is defined by
se) = 1 f 2O 4o
(p(Z) - T 7 — g. d£ g_)

where £° is Lebesque measure on the plane. One has

(1) 8¢ = ¢ = 8¢
whenever ¢ ¢ ©. A basic estimate is
(2 l|¢lles1.c = KB, @) llells.c ,

valid if 0 < 8¢ Z, ¢ ¢ D and diam spt ¢ =< d. Here K(8, d) is a constant inde-
pendent of ¢. This estimate goes back to Bers [1, p. 9].

Fix ¢ ¢ © with ¢ = 1 on a neighbourhood of X, and define the continuous
linear map C : & — & by setting

Cf = vf
for f e & By (2), C extends to a continuous map C : Lip (8, C) — Lip (8 -+ 1, C).
For pe Z" and ¢ & D consider the linear operator T, , : € — & defined by

AN
Tnp ,r)( = Cp[ﬁo' (a)pﬂﬂ

for f ¢ & (for instance, to caleulate T, .f, first calculate (8)*, then multiply by o,
take the Cauchy transform, multiply by ¢, and finally apply the Cauchy
transform again).

Claim. If pe Z" and ¢ & D, then there is a constant K depending on 8, p, ¢
and ¢ such that

HTV:.D]’H/S,C = K “ﬂlﬂc ’
whenever [ £ D.

Proof of Claim. The proof proceeds by induction on p.
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In case p = 0, T, , is the classical “T, operator” [3, p. 29], and we have

~~

Tw.Of = ‘Pf - f'é(p,

as 1s easily seen. Hence for 0 < 8¢ Z,

1T, oflls = leflls + 11f3ells
K1 Hf”ﬂ + K2 Hfé‘PHﬁ-l

ItA

(by (2))

lIA

K, iflls -

(Fory = 0, ||f||, denotes the uniform norm.)
Now suppose the claim holds for all indices less than p, and all 8, ¢ with

0 < B¢ Zand ¢ ¢ D. Denoting ¢, = (8)°¢, we have

p+1
I

@eh) = 0771+ 3 (7 Do,

hence
S »
T = Ol @) = 016 — 35 (7 T )o@y

— Tyateh + 3 (O T )Tt

hence

A

IPeaflle £ 1T el + 35 (7 5 ) 1O Tt

< K, H‘Pﬂ\ﬁ + ’é K, HTlPr—k-H-kaﬂ'Fk"v
= Ko lflle + 35 Ks il
< Ko lifls

Thus the induction step is complete, and the claim is proved.

III. We observe that if { ¢ &€ and (8)™"'f = 0 on a neighbourhood W of
X N spt ¢, then (3)""'T, .f = 0 on

V = [W\J (C\spt )] N [int {z: ¢(x) = 1}],

which is a neighbourhood of X; for if ze V, then (8)"y(x) = Oforp = 1,2,3, - - -,
hence by repeated use of (1),

(@', Wf1(@) = @)™ e(x)-(9)" " f(x),
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IV. Now suppose f ¢ Lip (8, C) and
(3) f‘l [(R(X M Ui)5m}ﬁ.xr\v.'

for each element U, of a finite collection {U,, U, , --- , U,} of closed balls
whose interiors cover X. Modify f off X (if need be) so as to ensure that spt f is
compact. Extend {U,},’ to a finite covering {U,}, of spt f by closed balls such
that the interiors also coverspt fand U; M X = @ forg+ 1 £ 7 £ Q. Choose

functions ¢, , 5, -, ¢g & D such that spt ¢, C U; and Z ¢; = 1 on a neigh-
bourhood of spt f. Consider the function
Q
fi=f= 2Tt
iy
= f = CE™
=f—C™d)"f.

We have (8)""f, = (8)""'f — ¢"(3)""'f = 0 on a neighbourhood of X, so
fi e R.(X). Also, since (8)""'T,, .f = ¥":;(d)™"'f, it follows that
Q

(5)1“1 Z Tw.mf =0

i=gtl
on a neighbourhood of X, so that

i Toiinf & Gn(X).

a+l
Fix 2, 1 £ ¢ £ ¢. Then by (3) we may choose a sequence {fy} ¢ ®.(X N U,)
such that ||f — fx||s.xnv: | 0. By modifying fy off X M U, we may assume that
[If — falls.c | 0. By part I1, it follows that

HTw.mf - Tw.‘,mfNHﬂ,C — 0.
By part III: T«p.’,mfN 3 (ﬁm(X); hence Tw,mf € [(ﬁm(X)]ﬂ.X . Thus
a Q
f = fl + IE T«:i,mf + E Tv:.‘.mf

a+1

belongs to [®,.(X)]s x . This concludes the proof.
It is easy to see that the proof of our theorem can be adapted to prove the
. following extension of Bishop’s theorem: the uniform closure of ®(X)®,. is local
whenever X is compact in C and 0 = m ¢ Z. In place of the inequality (2) one uses
the estimate

lielle.c = K@) llellu.c,
which holds for all ¢ ¢ D and d > 0 with diam spt ¢ < d.

4. We close with a simple, but useful, application of the operator C introduced
in §3, part II.
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If X C Ciscompact and 0 < ne Z, we denote the closure of & in Lip (n, X)
by D"(X).

Theorem. Let 0 < neZ, 0 £ je Z, and lee X C C be compact. Suppose
R(X)®; is not uniformly dense in C(X). Then

[(R@f*-n]n # D“(X>

Proof. Suppose &(X)®; is not uniformly dense in C'(X). Let U be the largest
open subset of C such that U M X has zero area, and let Y = X\U. Then every
nonempty relatively open subset of Y has positive area. Since ®(X)®; is not
dense in C(X), there exists a finite complex Borel regular measure u with support
in X such that u 1 ®&(X)®, . We claim that u must actually be supported in Y.
To see this, fix o ¢ D with ¥ M spt ¢ = & and form the measure

v=gpu+ (8p) £
Then {3, p. 51] » L ®(X) and spt » C X M spt ¢. Hence
v L ®(X M spt o),

since any rational function with poles off X M spt ¢ is the uniform limit on
X M spt ¢ of rational functions with poles off X. By the Hartogs—Rosenthal
Theorem [3, p. 47], » = 0, hence # = 0. But » = ¢f, so we conclude that 2
vanishes off 'Y, hence spt u is contained in Y [3, p. 46, (8.2)], as claimed. Thus
v L ®(Y)®; , so ®(Y)®; is not uniformly dense in C(Y).

Let us suppose, contrary to the assertion of the theorem, that

[R(X)®;.uls = D'(X).

We first obtain a contradiction by proving that ®(Y)®, is uniformly dense
in C(Y).
First, we claim that there is a constant K > 0 such that

4) 13)"g(2)] £ K |lg]la. v

whenever g £ & and z £ Y. It suffices to prove this for the points z at which Y has
full area density, since the set of such points is dense in Y. Accordingly, let ¥
have full area density at z and for i ¢ C let F(z, 1) denote the set of all points of
the form z + (r 4+ ¢s)h, where r and s run over all the integers between 27" and 2"
It is well-known [10] that there exists a sequence h, ~— 0 such that |4, 'h, — 1
and F(z, h,) C Y forn = 1, 2,3, --- . Thus by forming difference quotients
we find that each partial derivative 8'"'¢g(z)/0x'dy’, with i + j = =, is bounded
by K, |igll.. v , where K, depends only on n, and not on z or ¢. Taking K = 2"K, ,
we obtain (4).
Tix f ¢ ® and ¢ > 0. Choose & £ ®R(X)@,,; such that

Il — C™ll..x < ¢/K.
Then, since dCy = ¢-¢ whenever g ¢ &, (4) implies that
[1@)"h — " fll.r < e
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Since 8)"h e ®R(X)®;, CR(Y)®; ,and y = 1 on X (and hence on Y), we conclude
that  belongs to the uniform closure of ®(Y)®, on Y. Since D is uniformly dense
in C(Y), we are done.
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Added in proof. The localness theorem holds for integral 8 also. The argument
of step II of the proof must be changed somewhat to cover this case. The key
observation is that for f and ¢ in D and any ne Z*, we have

{7 0l £ [1f 90llerse £ Ko |l 90l lucre £ Ko [Hl]a
so that
Ty ol £ Kllflla .

This work was partially supported by National Science Foundation grant
GP-33693X.

University of California, Los Angeles
Date communicated: May 28, 1974







