[ 317 ]

24,

METAHARMONIC APPROXIMATION IN LIPSCHITZ NORMS*
By A. G. O’FARRELL

University of California, Los Angeles

(Communicated by T. T. West, M.R.L.A.)

[Received, 13 NovemBER 1974. Read, 23 Juxe 1975. Published, 30 DeceMBER 1975.]

ABSTRACT

We study approximation in non-integral Lipschitz norms by harmonic, bihar-
monic, and other metaharmonic functions. We prove that the approximation
problems involved are local, and we relate approximation problems in different norms
to one another.

Let d be an integer greater than 2. For a compact set X < R? and a positive
integer p, H,(X) denotes the space of real-valued C* functions f on R* which satisfy
the equation

ATf=0

on a neighbourhood of X; here A is the Laplacian. This paper concerns the closure
of H,(X)in Lip(f, X), for positive nonintegral 8 (cf. §1 for the definition of Lip(8, X)).
In earlier papers [1, 2] the author set up a scheme for attacking approximation prob-
lems concerning rational functions in the plane. Some parts of this scheme carry
over to any context in which the appropriate integral operator has certain continuity
properties. For H,(X) the appropriate operator is the Newtonian potential, and
the required bounds are obtained in Lemmas 1 and 2.

Here is a summary of the results. In all cases, X is a compact subset of R,
d=3, and p is a positive integer.

Theorem 1. Let 0<fi ¢ Z. Then the closure of H,(X) in Lip(B, X) is locally deter-
mined, in the sense that if f is a function on X, and each point of X has a closed neigh-
bourhood U such that f belongs to the closure of H(X n U) in Lip(B, X n U), then
S belongs to the closure of H(X) in Lip(, X).

This partially complements a result of Weinstock [4, Proposition 5]. He proved
that the closure of H (X )in the germ space C*(X) is local, whenever A is an elliptic
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operator with constant coefficients, and k is a nonnegative infeger less than the
degree of 4. Here H,(X) denotes the space of C® functions which satisfy the
equation Af=0 on a neighbourhood of X.

Theorem 2. Suppose that every real-valued continuous function on X is the uniform
limir of a sequence of functions in H,(X). Then the closure of H,, ,(X) in Lip(ff, X)
is ip(P, X), for 0< <2,

Theorem 3. 0<f3¢ Z. Consider the two statements:
(1) The closure of H(X) in Lip(B, X) is lip(f, X).
(2) The closure of H, (X) in Lip(B+2, X') is lip(B+2, X).
Let m be the largest integer less than . If X is uniformly m-thick, then (1) implies (2).
If X is uniformly (im+2)-thick, then (2) implies (1).
The concept of m-thickness is defined in §3 (cf. also [1]).

Theorem 4. Suppose X has zero d-dimensional Lebesgue measure. Then H,(X) is
dense in ip(f8, X) in Lip(B, X) norm, for 0<f <2,

In case 0<f <1, this is contained in Proposition 3 of [4].

§1. For 3< deZ, & denotes the space of real-valued infinitely differentiable func-
tions on RY, and & denotes the space of functions in & with compact support. For
a multi-index i=(iy, . .., i,,) € Z%,, the corresponding partial derivative of a function
fat a point a € R? is denoted D;f(a). The order of this derivative is ] i|=2:‘,,,. For
>0 we say that a bounded continuous real-valued function f, defined on R?, belongs
to Lip f if

(1) D,fis continuous and bounded for M <P,
(2) D, [satisfies a Lipschitz condition with index oc=[3—| i | for i—1 g] i [ <p:

sup [P = DD _ s o
X,y Ix _y,a

When endowed with the norm

1fle= Z | Diffu+ E  least M,
lil<p B-1<li|<p

Lip /# becomes a Banach algebra (here | - |, stands for the uniform norm on R).
The closed subalgebra lip f# consists of those f'e Lip f such that

sup |th(x)_Dif(J’)| 10

jx—pl<s |x—y|°‘

asd L 0, for f—1<|i|<B. If X<R? is compact, then the set
I(X) ={felipf:f=0o0n X}
is a closed ideal, and hence the quotient

Lip(8, X )=Lip S/I(X)
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becomes a Banach algebra when given the quotient norm. Clearly Lip(#, X ) may
be thought of as a space of functions on X (in these terms Lip(f, X ) consists of those
functions on X which have extensions in Lip 8, and the norm of a function fin Lip(g,

X)is | fllsx=inf{] g |, : g Lip ./ =g on X}).

The set

lip(B, X )=§p_[;,(}{)@

forms a closed subalgebra of Lip(f, X). For0< ¢ Z, 9(+1(X)) is dense in lip(§, X).
If0<pB <y, f ¢ Z, then each function in Lip(y, X') belongs to lip(f, X' ). Membership
in Lip(B, X') is a local property [2], and the same holds for lip(f3, X ).

& denotes Lebesgue measure on R?. The Newtonian potential of a function
J€ 2 is the function Pf'e & given by .

Pf(X)'-:—).. -,—;—{—gc'%d—_idffdy (XGRd)’

r(‘_’q)
2
4nd2

As is well known [3, pp. 117 118], the operator P inverts the Laplacian, A, in the
sense that

where

A =

APf=PAf=f(fe D).
Theorems 1-3 hinge upon the continuity properties of P with respect to the
various Lipschitz norms and the uniform norm. These properties are set out in
the first two lemmas.

Lemma 1. Suppose 0<f¢ Z. There is a constant K,, which depends only on f, d,
and diam spt f, such that

VP pez=Ki | f s
whenever f € 2.

Proor. For 0<f <1, this fact is implicit in [3]. In fact, the space A, of Stein coin-
cides with Lipf for 0 < fi <1 [3, p. 150]. Hence there is a constant K, >0, depending
only on d and f, such that for fe 2,
| RS s Ks | S| 1)),

where R; denotes the j-th Riesz transform {3, p. 143]. Thus, if 1 £/, j<d, then

| DiPflls =| R R; AES|S

= “ R R; f “ﬂ

K2 || /s (fe D).
Since D;;Pf(x) decays like dist(x, spt £)~¢ as [ x | T oo, we deduce successively
that the lower-order norms
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| Dy B s | D Bf o || BF ]

are similarly bounded.

We obtain the result for higher nonintegral by induction. The key fact is that
P commutes with partial derivatives: . ‘

[DPFI0)= x{ ) l—}-,—f—(xy—?z:zde?"y}

i{ ) f(u+x) dgd }

|u|d 2

J' zf(y) d.gd
[y-

la 2
=[Pd;f)(x) (xe R, fe D).
Suppose O<u <1, 0<m € Z, and the result is true for f=m+a. We will prove
it for f=m+1+o.

Let fe @, let je Z™ *2 be a multi-index, and let i=(j, k) € Z7 ** be another.
We have

| D:Pf o= D; PDif |la
<Ky || Dif |lm+a » by hypothesis
éK4 1|f”m+l+a'
It follows that the result is true for f=m+1+a.

Lemma 2. Suppose 0<f<2. There is a constant Ks, which depends only on d, B
and diam spt f, such that

| Prs2Ks | [ ] (fe D).

PrOOF. Since Pf decays as it does, it suffices to prove the case 1<f<2.
Let x=f—1. The Riesz potentials 7, are defined by setting [3, p. 117]

. S a
Lre=__| IV _ 4o
f) y(@) )| y—x | Y

whenever x € R? and fe 9, where
a2 p( X
2/.

)
2

Observe that P= —1I,. By comparing the Fourier multipliers corresponding to the
various terms, we obtain the equality

D;Pf=RI,[ (fe 2,1<j<d).
Thus for fe 2,
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| D; Pfll.=] R; 1, f|.
<K LS.
SKs || fla (*).

The last inequality is justified by making a direct estimate of the Lip « norm of the

function
gx)= J‘ny(y?d L ALy,

as follows.
Let diam spt f=R, and let x, z € R. Set r=%4|x—z|. Clearly,
lgl.sKs | f].R

where K, is the surface area of the unit sphere in R?. Hence, if #= R, we have

|80 =8@) | p1-e pr-a i, | 1],

=3
So suppose r< R, and let B,={weR’: I xX—w |§r},
By={weR':|z—w|Zr}.

Then
1 1
£(0)~2(2) éf f - | a2y
[ I 'y__xld 1 Iy 'd 1' “f”
d.1
Ty
<K, — .
= Sglrfly—xr‘ Hy-z|f
d—1
Ky Z{rj‘+rf+rf' }
i=1 By B, :Rd\u, \8,
Now
d r
r i&,’y <K, r! fj si™tds
g | y=x|" {y=z |/ 0
—Klor
=K rt.
Also,
rf §K“r“.
B,
Next,

rf ’ d Py
R \s, |V—x]" |y—z}

y
rJ'd d£€yd+r"‘ df"yd
R\Blly—xl ", V-2 |

liA
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R
=K, rJ' 21{
. S
R
<K.%r" j : é
05"
=K, r%
Thus
] g(x)—g(z) ]§K14"a .
Hence, no matter what points x and z are taken,
‘ g(x)—g(2) ;§K15 ‘ X—z l“ »
where K, g depends only on d, « and diam spt f.
The inequality (*) implies that
I asKs | Sl

as required.

§2. This section is devoted to the proof of Theorem 1. The main tool in the
proof is the localisation operator L, ,. Fix X < R?, compact, and choose i € @
such that Y =1 on a neighbourhood of X. Define

Cf=PWf),
Ly f=CP7'P($. NPf),
whenever fe 2, pe &, L SpeZ. Itisa simple matter to check that
APLq&,pf: o. Apf
on the interior of the set ¥ ~*(1). Thus, inside this neighbourhood of X, L
the equation

oop) satisfies
N'g=0
wherever f does, and off the support of ¢. Also
A" (Lyypf—f)=0
on the interior of Yy ~!(1) n ¢~(1). Clearly, L, , is the analogue in this situation
of the famous Vitushkin localisation operator T, for analytic functions.

Lemma 3. Let1<peZ,0<BéZ,andpeD. Thenthereisaconstant K, depending
ond, B, p, ¢ and \y, but not on f, such that

V Loof 6= Kie | /|6
whenever f € 9.

Proor. Consider first the case p=1, §>2. Applying Lemma 1 we obtain
I Zo.of la=1P($- AN
SK | ¢ A -2
=K [ @]z &S5z
K7 || flls-
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Next, consider the case p=1, 0<ff<2. Here, and in the remainder of the proof,
we adopt the convention that each operator in a string shall be understood to act
on the whole string to its right. For instance,

R;P(V¢).Vf.g means R{P(VP).(V(/.2).
we have
| Lot o= PLOGS=2V$.Nf~f. 28} |5
<1 0.7 Ja+ 20 P8+ 1720,
Only the second term poses a problem. To estimate it we set Vd=(¢b, ..., ¢,),
and proceed as follows.

(o) If 0< B <1, we infer from the identity
=_R111¢j-f_Pf-Dj¢j

| PosDif = Rili s s+ 11E1D505 |5
<Ko || 5 [ut Ks || £-D;0,1.
<Kis | f].
SKig || f]s-
Here we have made use of Lemma 2.

that

(b) 1f 1 < f# <2, another application of Lemma 2 yields
| Po;-D;f s=<Ks || 6,01 |l
<Ks | éilull/1s-
Thus the lemma is proved for p=1 and all f. To get the result for p> 1 we pro-
ceed by induction. The induction hypothesis is as follows:

(K IfO<PéZand s, Yy, ..., Y,€D, then there exists a constant K, g, which
does not depend on f, such that
| PY1Pha. ... P NPf S Koo || /5
Certainly () holds. Now suppose () holds for 1£k<p. We will prove that
(4,4 1) holds.
LetO<f¢Z andlet yyy,...,¥,;,€2. Forfe P we have

‘abp+1- Apﬂ.f: A l//p+ 1.APf—(A l//p+l)‘Apf_(va+ 1)-VA'7;

hence
PYi PPy . PY,y APYLS
=PYy . PUplya A= PUy L PYP(A ). A
—PYy .. PYP(Vyy ). APYS

=Zl"Z2—'Z3.
By (s7°,) there exist constants K,, and K,,, depending on ¥, ..., W41, but not
on f, such that

” Zl ”ﬂéKw ”f]ﬂ >
122 lp<Kzo | £ -




324 Procecdings of the Royal Irish Academy

To estimate Z, we consider three cases.
(@) f>2. By Lemma 1 and (5#,) we have

d
I Zs “ﬁéJ;“P‘/’r e PY, P(Dplys ). ATD;f ||

A

d
LKt P PUy POy 7D 5

d
-S-J;Kzz I Difls_2

SKos | f g1 -
(b) 1<f<2. Using Lemma 2 in place of Lemma 1 we obtain
1 Zs s Kaa | f 1S Kas | £ ]s-
(¢) O<pB<l.
Py .. PYP(D 1) APD S
=Py, ... Plpp'PDl(Din'l- DO
~PYy. ... PYPP(DRY ). O
The second term is suitably bounded, by (5 ), and the first equals
PYy.... PYpD Py ). AP
=Py, ... PDi‘l’p~P(Di\//p+ O-DFf
— Py ... PO PD ). AP
The second term is again suitably bounded, and the first can again be broken up.
Continuing, we find that Z, differs from a suitably bounded quantity by

DiPYy. ... PY, P(Dilpey). NS

But
| DiPyrs. ... Py, P(Dilryps 1) NP
<[ PYs. ... P POy D e
<Ko | PUs ... PYpPDWpar)- 0% |

by Lemma 2,

SKs [Py ... Py PDa,. )0 |lp
=Kos | /1>

hence

1Zs Js=Kas || F -
The induction step is complete, and (5 ) holds for every positive integer p.
To see that (##,) implies the statement of the Lemma, take

ll/l=l112= .. '=ll/p._1=¢”
‘l’p:‘qs'
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ProoF oF THEOREM 1. Let f be a function on X, and suppose {U;,..., U,} is a
finite covering of X by closed balls such that f | X n U; is approximable in Lip(p,
X N U;) norm by functions in H,(X n U)).

Since Lip(B, X ) is locally determined, f has an extension in Lip f. Let us denote
such an extension by the same symbol .  We may assume spt fis compact. Choose
functions ¢, ¢z, ..., ¢, € Z so that

(1) Spt ¢j < UJ ]
(2) Z¢;=1 on a neighbourhood of X.
Then the function

fi=f = X Loyt

:f— LEd:_,,pf
satisfies A\’f; =0 on a neighbourhood of X. By Lemma 3, L, ,feLip f, and
thus f; belongs to the intersection of H,(X ) and Lip(8, X).
Fix j, 1£j<n, and choose a sequence {f,}Y<H,(X n U;) such that
|/ =/ llg.xnv, tends to zero. By modifying £, off a neighbourhood of X n U; we
may assume that || f—/, ||, tends to zero.

By Lemma 3, we infer that

” Ld’j:Pf'"_Ld’ijf"ﬂ - 0.
Since

APL({)/,pf;n(x) =0
holds whenever x € int ¢ ~(1) and @ (). APfr(x) =0, we see that L¢j,pfm € H(X),
hence
f=lim {fi+ZL,, [P}

m—oc

belongs to the closure of H,(X) in Lip(B, X).

§3. In this section we prove Theorems 2 and 3.

The dual space of Lip(8, X ), denoted Lip(f, X )*, consists of all continuous linear
functionals on Lip(f, X'). Since the natural mapping f & f +I(X) of & — Lip(8, X)
is continuous, any element 7 e Lip(ff, X )* induces an element of &’ —a distribution
with compact support. We normally use the same symbol 7 for this distribution,
but when we wish to distinguish we use T| &. Observe that the equality T| &=S | &
does not imply that 7=, indeed T| &=0ifandonlyif T'L lip(8, X). The support
of T|&isa subset of X, since T | & annihilates 92 ~ I(X). The Newtonian potential
P provides a continuous injection of & into &, hence if Te &', then TP € 2'. If

Te& n H,(X), then spt T< X, since every C® function which vanishes on a neigh-
bourhood of X lies in H,(X).

Lemma 4. Let Te &' and let X<R? be compact. Then T 1 H,(X) if and only
if spt TP< X,

R
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Proor. Suppose T L H(X). Letpe 2, X nspt p=¢F. Then P ¢ e H,(X), hence
TP ¢=0. Thusspt TP<X.
Conversely, suppose spt TP<X, and let he H,(X). Choose ¢ € Z such that
¢=1 on a neighbourhood of X. Then
Th=T¢.h=TP A ¢.h=0,
since A¢h= Ah=0 on a neighbourhood of spt TP.

Lemma 5. Let Te&'. Then TP e & ~ H(X) ifand only if T L H, (X).

PROOF. Suppose TP € &' n H (X ). Fix fe H,, (X)n 2. Then Afe HX),
hence
Tf=TPAf=0.
Thus T L H,, ,(X).
Conversely, suppose T L H,.(X). Fixfe H(X)n 2.
Then
P Bf= AP f=0
on a neighbourhood of X, hence TPf=0. Thus TP L H,(X) n 2. By Lemma 4,
TPe &', hence by continuity TP L H,(X).

Proor ofF THEOREM 2. Suppose X < R is compact, 0<fi<2, I1<peZ, and H (X)
is uniformly dense in C(X ') (the space of all real-valued continuous function on X).

We wish to show that H,.,(X ) is dense in lip(8, X') in Lip(8, X ) norm. We will
use the separation theorem.

Let T e Lip(8, X )* A H,,,(X)*. We will show that TI & =0, so that T" L lip(f3,
X).
By Lemma 5, TP L H,(X ), and by Lemma 4, the support of TP is contained in
X. We claim that TP is a distribution of order zero:

| TS| S Ko |/ ]ux (fE6),
where K,, does not depend on f.  To see this, fix fe&and 1>¢>0. Choose ge P
with support contained in the e-neighbourhood of X, with /=g on a neighbourhood
of X, and
lelus ]S fux+e
Then by Lemma 2,

| Pell<Ks ]
where K5 depends only on diam X. Thus
| TPf|=| TPg |

= T]. Ks | £ |
<Ky (| fllux+9-
The claim follows. Hence TP € C(X)* n HP(X)l, and hence by the separation

theorem and the hypothesis, TPI &=0. But P9 - PAD=92, hence T L 2, hence
T1¢&.
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Before discussing Theorem 3, we must define m-thickness [1]

All sets are considered O-thick.

Let 1£m e Z, and let X < R? be compact. Let D™(X) be the closure of &+ I(X)
in Lip(m, X'). For ae X, J (X, a) denotes the space of m-th order differential
operators on the Banach algebra D, (X) at a, i.e. J,(X, a) consists of all those func-
tionals 7€ D™(X )* which annihilate the subspace generated by the constants and
the (m+ 1)-st. power of the maximal ideal at a.

At isolated points of X, J,(X,a)={0}. At accumulation points, the dlmenslon
of J,(X, a) lies between /m and 4m(m+3), and either extreme value may occur. We
say X is m-thick if

dim J, (X, a)=%m(m+3)
for each a € X. If this is the case, then all the partial derivatives
S Dif(@ (fe&)
corresponding to multi-indices / with | i|<m and points a€ X, extend to unique

elements of J,(X,a). We denote the extensions by the same symbols. We say
X is uniformly m-thick if there exists a constant K,4 >0 such that

} D:f(a) , §K29 nfnm,X (*)
whenever | i|<m,fe & and ae X. Uniform m-thickness implies m-thickness, and
hence implies that (*) holds for fe D™(X'). By an approximation argument one sees
that if X is uniformly m-thick, then D;f(a) is a continuous function of g on X, for
each fixed fe D™(X) and |i|<m.

Whenever we wish to distinguish, we will write f for the coset f+ (X ) correspond-
ing to a function /in Lip f.

PROOF OF THEOREM 3. Suppose X<R? is compact, 1SpeZ, 0<f¢Z Let m be
the largest integer less than B, and suppose X is uniformly m-thick. Suppose H,(X )
is dense in lip(8, X' ). We will prove that H,, (X ) is dense in lip(f+2, X ).
Let TeLip(f+2, X)* N H,, (X)* We wish to show that 7| &=0.
The support of TP liesin X, and TP 1 H,(X ), by Lemmas4and 5. By Lemma 1,
| TP\ Tper Ko | £ s Fe ),

where K, depends only on d, f and diam X. Thus TP has a unique extension (also
denoted 7P) in (lip f)*.

Suppose f and g are two functions in lip § such that f=4, i.e. f=g on X. Let
¢>0 be given. Since X is uniformly m-thick, we have
D f(a)=D;g(a)
whenever | i,]_gm and aeX. Let h=f—g. For each multi-index ieZ% with
[i{sm, set ?=Dh. Define R(x, y) on R* x R by setting [3, p. 176]

. HUTD .
/2(‘)()(): }: _#2 (x—y)’-i—R,(x, y)
li¥7sm  J*

whenever x, y € RY, where

d
Jt=1 ji!,
k=1

NEEINENE VPRSP TR BN T I N
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d
(x~y)= 1 1(xk—yk)”‘-

Since 4" =0 on X, R;=0 on X x X for | i|<m, and i elip B, it follows that there is
a compact neighbourhood Y of X such that

| H(x) |Se(xe Y, |i]|<m),
R (x, ) | Sefx—y [ (x, ye Y, |i|2m).

Hence, by the Whitney-Calderdn-Zygmund Extension Theorem [3, p. 177, Theorem
4 and p. 194, § 4.6], there exists a function k € lip § such that 1=k on Yand | k ||, <
2m*l e Thus

| TP(f—g) |=|TPk |<Kso 5.

Since ¢>0 was arbitrary, TPf=TPg. Hence TP is a continuous linear functional
on lip f with

I(X)nlipB < ker TP.

By the Hahn-Banach theorem, there exists an extension Q of TP in (Lip f)* with
I{X)<ker Q. It follows that Q induces a continuous linear functional R on Lip(f,
X)*.

If fe H{X), then Rf=Qf=TPf=0, hence RL H(X)+I(X). Since H,(X)+
I(X) is dense in lip(B, X'), it follows that R L lip(f, X'), hence @ 1 lip 5, hence
TP 1L & hence T LS.

The other direction of the theorem is similar.

§4. In this section we prove Theorem 4. The reader will observe that there is a
representation formula for TP} (T e Lip(B,X )*, 1 < f <2) concealed in the proof.
If0<p<i¢Z and H,(X)is dense in lip(y, X ), then H(X') is dense in lip(B, X).
In fact, if fe lip(y, X'), then
1 lpxsKaz [ /x5
where K5, depends only on f, 7, d, and diam X. Hence it suffices to prove the
theorem for 1 < f<2.
Fix 1 < <2 and a compact set Y<R?. Leta=p—1.
Let Telip(B, X)* n H (X )*. For fe &,and 1<j<d, the functions L;f, defined
by
Lfx, yy=20 =D (o, gy,
[x—y [
lie in C(R*%). The map
o Lf=(Lf, Lafs o5 Laf)
& C(RZd)d

has for kernel the space of affine functions on R’, a subspace of H (X ). Thus we
obtain a well-defined functional S on imL by setting

SLf=Tf (feé&).
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Suppose T is actually bounded with respect to the quotient seminorm || - ||'5 x induced
on Yip(B, X') by the “pure” Lip B seminorm on lip B:

sup | 2SR =D /) |
171= 3, sop o
Then we have
| SLA| =TS\ 7| [/ ]sx
I Th 1A= TN LS luey (feD),

where

I & Jua =Z le; . (ge C®¥Y

is the product uniform norm. By the Hahn-Banach Theorem, S has a continuous
extension S on C(R?)?. We may take § to have support in X x X, since SLf=0
whenever Lf=0 on a neighbourhood of Xx X (If Lf=0 on a neighbourhood of
X x X, then each D;f is constant on that neighbourhood, hence X has another
neighbourhood on each component of which fis affine, hence Tf=0, hence SLf=0.).
By the Riesz Representation Theorem, there exist measures uy, s, .., 4, on Xx X
such that

Tf=ZfL,fd/1, (fe &)
Thus for fe 2,

r
L,;Pfdy;

Ma.

TPf=

-
]

-
[

(D;Pf(x)—D;Pf(y) dui(x, »)
1. | x=y|* ’

I
.M&

It

J

_ Z PDJ (%)= PD,f(y) du(x
= [x=y]* ’

L ([ DiS®) 1 I )
- - ALHEdy (x,
iZ J.J.|x ~y] ’{ Pe—x]=2 &y |d—2} (©)du(x, y)

J©) &—x; $i—y;
=Hd-2 { - i_\di(E)dy,
A( ) Z j:{' X~ yl Ué xld 2 ]5 14_2} (5) .uj(x’ y)

»)

'_x.i é yJ ) d
~flre-2 5, [l oo
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=ﬁmwm¢wa

where G(&) denotes the expression in square brackets. The Gauss-Green theorem was
used to get the fifth line. The use of Fubini’s Theorem to get the sixth line is justified
by the fact that we may insert absolute values in the fifth line and get something
bounded by | /||,; in fact this is true for any function fin L® with compact support.
This estimate is basically the same as Lemma 2. Hence G is locally integrable with
respect to Z°.

Now suppose Z4X)=0. Fix ¢ ¢ X, and choose ¥ € @ such that

i
\//(x)—w
for x near X. Then ¢ € H,(X), hence
0="Ty =G(&).

Thus G=0 off X, hence G=0 #?—almost everywhere, hence TP] 2 =0, hence
T|&=0, hence T L lip(2, X).

Thus, if #4(X)=0, then H,(X) is dense in lip(B, X' ) with respect to the “pure”
seminorm || - |5 x. But this clearly implies that H;(X) is dense with respect to the
usual Lip(, X ) norm, | - |5 x, since H,(X) contains all affine functions.

The theorem fails for f=2. In fact there are countable compact sets X such
that H,(X ) is not dense in D?(X); all that is necessary is that J,(X, a) contain A-(a)
for some a € X.

REFERENCES

[11 O’Farrest, A. Annihilators of rational modules. J. funct. Anal. (to appear).
[2] O’FarmrrLnn, A. Localness of certain Banach modules. Indiana Univ. math. J. (to appear).
[3] Steix, E. 1970 Singular integrals and differentiobility properiies of functions. TPrinceton.

[4] Weinstock, B. 1873 Uniform approximation by solutions of elliptic equations.  Iroc.
Am. matk. Soc. 41, 513-517.

ADDED IN PROOF

The author has recently extended Theorem 1 to the case of integral £.




