CONTINUITY PROPERTIES OF HAUSDORFF CONTENT

ANTHONY G. O'FARRELLY}

ABSTRACT

If E is a subset of R?, contained in some ball with diameter 1, then the B-dimensional Hausdorff
content MA(E) is a non-decreasing function of g, for g = 0. For compact sets E, M?(E) is continuous
from the left. The main result of this paper is that if 0 < & < y < d, and the lower y-density of E is
uniformly bounded below at the points of E, then the right-hand limit of M?(E) at « is at least as
large as kM*(E), where « is a positive number which depends only on «, ¥, and the lower bound for
the density. The result has application to rational approximation in Lipschitz norms.

If E is a subset of Euclidean space RY, and « is a non-negative real number, then
the «-dimensional Hausdorff content M*(E) is defined as the infimum of all sums

3 (diam S)*

Se¥

where & runs over all countable coverings of E by closed balls [1]. The content
M is also referred to as a size oo approximating Hausdorff measure [2; (2.10.1)}.
Clearly M*(E) increases as E increases and as « decreases (provided E fits inside some
ball with diameter 1). The continuity properties of M*(E) as a function of E are
well understood {1; Chapter 2], but the problem of how M?*(E) behaves as a varies
appears not to have been studied. The reason for this is, presumably, that most
attention has been focused on the Hausdorff outer measure $*(E) [2; (2.10.2)], and
this is uninteresting as a function of «. Indeed, $*(E) is finite and non-zero for at
most one value of «. In contrast, M*(E) is finite for all « = 0 whenever E is bounded.
The measure $* and the content M* have the same null-sets, and so for some applica-
tions it is a matter of indifference which one is used. In the study of surface area,
Green’s theorem, and Plateau’s problem [2], its properties as a Borel regular outer
measure make $H* the preferred tool. But for approximation problems concerning
analytic functions in the plane we find that M* is more suitable: the sharp quantitative
conditions for approximation involve M* [3, 4, 51.

Before stating the theorem, we fix some notation. If D is a closed (resp., open)
ball, and 7 is positive, then 7D denotes the concentric closed (resp., open) ball with
radius equal to t times the radius of D. If E is a subset of R?, and f is positive, then
the lower f-density of E at a point x € R? equals

.. MMEn1D)
lim inf —————
«10 (diam D)

where D is any closed ball with centre x.
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THEOREM. Let E be a subset of R?, contained in some ball with diameter 1.
(2) If Eis closed, then

lim MA(E) = M*E) (0 < a < o)
Bta

(0) If T > 0 < a <y <d, and the lower y-density of E at each point of E is no less

than T, then
kM*(E) < lim M#(E) < M*(E),
Bl=

where
x={2+ F-I/y}—ay/(y—z).

Part (a) is quite simple, as we shall see. We will give examples to show that (a)
fails for some open sets and (b) fails for some closed sets. We will give an application

of (b) to rational approximation in Lipschitz norms.
We do not know whether or not the constant k may be replaced by 1.

1. Proof of Theorem

(a) Clearly
lim M#(E) > M*(E).
Bta

Fix ¢ > 0, and choose a countable covering S of E by closed balls with

3 (diam S)* < M*(E)+e.

Se¥

Replacing each ball S in & by a slightly larger open ball, we obtain a covering J of E

such that
> (diam T)* < M*(E)+e.

TeT

Let 77, be a finite subcover selected from J. For each Te J |,

lim (diam T)® = (diam T)%
Bra

hence there exists a number y < « such that

MAEY< T (diam T) < M*E)+¢

TeJ:

whenevery < f < «; hence
lim M#(E) < M*(E)+s.
Bta

The result follows.

(b) The right-hand inequality is obvious, We divide the proof of the left-hand

inequality into steps.

Step 1. Fix p, with
0< pu<{2+@/DHVy7070 < 1
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For 8 > «, let us say that a family  of closed balls is S-vulnerable with respect to a
closed ball Dif | ) 7 « D and

(diam DY < (1—p) S (diam T)’.
Ted

When no confusion is possible we will write < vulnerable ™ instead of ¢ f-vulnerable .
For each B, with o < f# <d, we claim that there exists a countable covering
&5 of E by closed balls with the following properties:

() ¥ (diam S)¥ < (1+ f—«) M/ (E),

Se¥a
(2) no subfamily of &, is f-vulnerable, with respect to any ball.
Let p denote the Hausdorff metric [2, 3] on the closed subsets of R, Recall that,

with respect to the topology induced by p, bounded sets have compact closure.
Choose a countable covering

-900 = {Sl’ Sz, S3, }

of E by closed balls such that each S, meets E, the diameters of the S, are non-
increasing, and ¥, satisfies (1) (with &, replaced by &,). If &, satisfies (2), the proof
is complete. Otherwise, let 8, denote the family of all closed balls D such that some
subfamily of & is vulnerable with respect to D. Let

my = sup{diam D : De %,}.
Choose a sequence {B;}{2, contained in %, such that diam B;Tm; as i{ oco. If
Be 4%,, then B meets E, and

diam B < {(1— p)(1 + f—a) MP(E)} V2.
Hence, letting
o = diam E+{(1 — )(1 + f—) MP(E)} /%,
we have
B, < {A = R?: Aisclosed, p(4, clos E) < ¢}

so that %, has compact closure. Thus there exists a subsequence of {B,},; converging
to a closed ball B, with diameter m,. Let

D, = (1_#)~1/(2ﬂ) B,.
Then D, contains a ball Be &, with
diam B > (1— )" * m, = (1 - w)'? diam D,.
Let 7, be a subfamily of &, that is vulnerable with respect to B. Then { ], = Dy, and
(diam D) < ¥ (diam S)%.

SE.7_|

Let &, denote the family (DU Fy~T
1 o~ 1-

Then &, covers E, since D, ¢ 7 ,. Clearly,
¥ (diam S < 3 (diam S),

Sed SeTo
so that &, satisfies (1). Enumerate &%, as
SI’: 8217 S313 LREE1
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with diam S,! non-increasing. If several elements have the same diameter as D,
place D, last.

If &, contains no vulnerable subfamilies, the proof is complete. Otherwise, let
A, denote the family of all closed balls D such that some subfamily of & is vulnerable
with respect to D, and form m,, D,, J, and &, in the same way as before. If &,
contains no vulnerable subfamily, stop. Otherwise, continue. If the process stops
at the p-th stage, then &, is the desired covering. .

Suppose the process does not stop. Let p be a positive integer and let I~ be a
subfamily of &, that is vulnerable with respect to some closed disc D. Write
T =% uH,where ¥ =« Fyand # < {D,, D,, ..., D,}. We claim that 2# = J. For
suppose not, and let 2 be the union of the J; corresponding to the various D; in
H. Letgq be the least index such that D e #. Then, since I, N T ; = & (I #j)and
A NY = J, we have

(diam DY < (1—p) ¥ (diam T)
Te%uxt

<(l—p) Y (diam T),
*

hence De4#,_;. Since diam D > diam D, > m,, we have a contradiction. Thus
H# = (J, hence every vulnerable subfamily of &, is a subfamily of &,. This has two
consequences. First, since

Lo P 1nFeF NS> ..,
it follows that
Boo> By DR, > ...,

hence m; |, and so diam D; |, as j 1. Second, no D; is ever removed in the process, so
&, contains Dy, D,, ..., D, and in that order.

Since each &, satisfies (1), diam D;] 0 as j{ 0. Let Se #,. Then there is an
integer ¢ such that for all j > ¢, diam D; < diam S, hence m; < diam S; hence S does
not belong to any vulnerable subfamily of &;_;. Thus if S is not removed by the
t-th stage, then it is not removed at all, and moreover its place in &; has the same
index for all j > 1. It follows that each D, also has the same index in &; for all large j.
Let &, denote the family {S;%, S,%, S;3%, ...}, defined by setting S,* equal to the
ultimate value of S’ for large j. Each S e ¥, either belongs to &, or is contained in
some D;e¥, hence | J & = (¥, and &, covers E. It is easy to see that &,
satisfies (1). Suppose & contains a subfamily J~ vulnerable with respect to some
disc D. Decomposing & as before into D;’s and S;’s, we deduce that I consists
entirely of S;’s. Since no S; in S,, is contained in a vulnerable subfamily, we have a
contradiction. Hence S, satisfies (2), and the claim is proved.

Step (II). We may assume that each element of each family &, meets E. This
means that the family { ] {&;: f > «} is a subfamily of the compact family

{A = R?: A4 isclosed, p(4, clos E) < 3},

and hence has compact closure. Select a sequence ;| « with f; <7y, let 2/ denote

&g, and let
R = {R,%, R,J, Ry, ...}, d = diam R/

Assume thatd,’ > d,” > d,’ > ..., for each j. Let @, denote the family of all closed
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balls D = R? such that
MY(E n1D) 2 I'(1 — p)(diam D)’

whenever0 <z < 1. Let
6y =sup{diam D : De 2,}.

There is a positive integer N such that
(24T~ lly(l _‘u)~2/7}—v/(v—ﬂj) > {2+ r-I/r(l _#)—2/7}—#(;’—1)__#’

whenever j > N. Let n denote the right-hand side in this inequality. Observe that
0<ny<l/2

Claim. d? > né, wheneverj > N.
Proof of Claim. Suppose the claim fails, so that
dJ < 16y

for some j > N and every k. We seek a contradiction.
Let 2 be given, 0 < 2 < 1-2p. Choose a closed ball D belonging to 2,, with
diameter (1—-2)5;. If Re #’ and R ~ D is non-empty, then R does not meet the ball

[—-A=2
D, = (————’7) D
1-4
Let 7 denote the family of all balls in %/ which meet D,. Then J covers E N Dy,
and JJ < D. Hence, with § = f,, we have
A=2=-2n?6 < T7'(1—=w™t 3 (diam Sy
Sed

ST 1=~ '@, " ¥ (diam S);

Sed

hence

3 (diam P> I'(l—#)(iy—_/;—Zn)’&" .
Since 7 is invulnerable,
A= (—=A=-2n < A=2f y'~t.
Since this holds for all small positive A, we deduce that
FA=p*1=2n <n7*,
U< 294 T (1= )= 2 yo=0v < Q24T (1= ) =2y =Py < |,
This is the desired contradiction.

Step (III). Hence the sequence {d,/}2 5 is bounded below by #8,, and hence
{R,7} {2, contains a subsequence {R,’: je J1} which converges to a closed ball R,
such that

diam R; = #d,, R, nclosE # .

If E < (1+p) Ry, we stop. Otherwise, for large je J,, the family %/ ~ {R,’}
covers the set E ~ (1+ ) R,. Defining 2, in the same way as 2,, but with E replaced
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by E ~ (14 ) Ry, and setting
6, =sup{diam D: De 2.},

we have d,’ > 53, for large je Jy, as in Step (ID. Thus the sequence {R,’: je J,}
contains a subsequence {R,’ : je J,} which converges to a closed ball R, with

diam R, = nd,, Ry nclosE #= .

IfE < (I1+u) R, v (1+ 1) R,, we stop. Otherwise we continue.
If the process stops at the p-th stage we have a subsequence {%’ : je J,} of {#/}7
and a collection {Ry, R, ..., R,} of closed balls such that

lim p(R/,R)=0 (I1<k<p),

Jp3Jjteo

P
Ec | (I+wR,
k=1

Thus, for j e J, we may write

o0

(I1+B,—x)MF(E) > 3 (diam R
k=1
» .
> Y (diam R/)»
K=1

- 3 (diam RY®
k=1

= (1+ 1)~ M“(E);
hence
M*%E) < (1+ p) lim M(E).
Bla

If the process does not stop, then by diagonalising we obtain a subsequence
{R/:jeJ} of {#}7, and a sequence {R,, R,, R;, ...} of closed balls such that

lim p(R/,R) =0 (k=1,2,3,.).
J3jteo
Let xe E, and let
6 = sup {diam D ;: De @, x = centre of D}.

Then, by the argument of Step (II), each covering #/(j > N) has a ball of diameter
at least #é which meets the closed ball B with centre x and diameter (1 —2#) 6. Thus
there exists an integer & such that R, meets B and diam R, > 56, and hence xen ™' R,.
Thus the family {37! R,}Z, covers E, and hence

M*(E) <#7% ¥ (diam Ry)*
K=1

=5"%Y lim (diam R/)"

k=1Jsjtewo
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<y *liminf ¥ (diam R/)%
Jsjtec k=1

<77 lim (1+f§;—a) M%(E)

Jsjteo

= n~*lim M#(E).
Bla

We used Fatou’s lemma to obtain the third line.
Thus, whether the process stops or not,

M*(E) < 1~ *lim MP(E).
Bla

Letting i tend to zero, we get

M*(E) < {2+ 7 1n=/G-91im MA(E),
Bi=

which is the desired result. This concludes the proof of (b).
With regard to the question of replacing x by I in (b), we remark that this could
be done if it could be shown that

M* (E ~ U Rk)
k=1

tends to zero with z.
If we are willing to settle for the constant x3™* instead of x, then the proof of
(b) can be simplified somewhat. Here is an outline of the simplified proof:
Fix g,
O<pu< {2+(4/r)1/7}—>'/(7—-a)‘

Choose a countable family ¥~ of pairwise disjoint closed balls such that ¥" < 2, and
such that, given xe E with § = sup {diam D: De 9,, x = centre D}, there exists
some ball ¥V e ¥ with radius at least (1 — ) such that ¥V meets the closed ball with
centre x and radius 8. Combining a simpler version of the argument of Step (I) of the
proof with the idea of Step (II), construct for each f > a a covering &, of E such that
for each V e ¥, the ball (1—2#) V meets some S € & with diam S > n diam V. Then
argue as in Step (II). The only difference is that if the process does not stop, then
we get that {3(1—p)~ ' 5~ ! R}, covers E (instead of {n™" R, }7).

2. Examples and Application
Example (a). Let P denote the cube:
{xeR:0< x; <d ¥?  foreachi}.

Let 0 < « < d. For each positive integer m such that 1/m < «, there exists a totally
disconnected compact set E,, < P such that

Mz(Em) — 0, Ma—l/rn(Em) — d—1/2

[2; (2.10)]. Let E be the union of the E,,. Then E is sigma-compact, is contained in a
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ball of diameter I, and
M*(E) < Y M%(E,) = 0 <d~"? = lim M?(E).
m Bta
If e > 0 is pre-assigned, we may fatten up each E,, a little and get an open set G such

that M*(G) < & lim M*(G).
Bta

Thus the conclusion of part (a) of the theorem fails for some open sets.
Example (b). Let 0 < « <d. Then there is a product Cantor set E [2; (2.10)]
such that M*E) =1, MY(E)=0 (8> a).

The left-hand inequality in (b) fails for this set, no matter what constant x is used.

Application. A measure function h(r) is a non-negative increasing function defined
for r > 0. To each measure function 4 we associate the content M, on R?, where
M, (E) is defined as the infimum of the sums

> h(diam S),

Se¥
where & runs over all countable coverings of E by closed balls. Obviously M, = M*
when () = rf. For > 0, the content M,.? is defined by M #(E) = sup {M,(E) : h
is a measure function, A(r) < r®, P h(r) = 0 as r| 0}.

Let X be a compact subset of the complex plane, C,and let 0 < o < 1. The theorem
of [5] gives a condition on X that is necessary and sufficient in order that every
function in lip (%, X) that is analytic on int (X) be the limit in the Lip (&, X) norm of a
sequence of rational functions. The condition is that there exist a constant y¢ > 0 such

that M!**(D ~ X) > uM,*%(D ~ int X)

whenever D is an open disc with diameter less than 1/2.

Let 1+ <y < 2, and assume that the lower y-density of C ~ int X is uniformly
bounded below on C ~ int X. Then the above condition is equivalent to the existence
of a constant y' > 0 such that

M*YD~ X) = ¢ MUPHD ~ int X),

whenever D is an open disc with diameter less than 1/2.
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