29.

FUNCTIONS WITH SMOOTH EXTENSIONS

By A. G. O'FARRELL

St. Patrick's College, Maynooth

[Received, 26 January 1976. Read, 30 November 1976. Published, 30 December 1976.]

ABSTRACT

We remove the nonconstructive hypotheses from the C^1 case of Whitney's extension theorem. For a compact set $X \subseteq \mathbb{R}^d$ we introduce the space $J_c(X)$ of sequentially-calculable bounded point derivations on the algebra $C^1(X)$. We show that if f is continuous on X and $D_u f(a)$ exists and is uniformly continuous for $(a, u) \in J_c(X)$, then f has an extension to \mathbb{R}^d in the class C^1 .

The object of this paper is to remove the nonconstructive hypotheses from the C^1 case of Whitney's extension theorem. We work with real-valued functions on \mathbb{R}^d , but the main result goes through for functions mapping any real C^1 manifold into a topological vectorspace.

The statement of Whitney's theorem is as follows:

Let X be a closed subset of \mathbb{R}^d , and let f be a continuous function on X. Suppose there exist continuous functions f_1, \ldots, f_d on X such that, for each point $a \in X$ and each $\varepsilon > 0$, there exists $\delta > 0$, such that

$$|f(y)-f(x)-\sum_{j=1}^{d}(y_j-x_j)f_j(x)| \leq \varepsilon |y-x|$$

whenever $x \in X$, $y \in X$, $|x-a| < \delta$, and $|y-a| < \delta$. Then f has a continuously differentiable extension to \mathbb{R}^d .

The only unsatisfactory feature of this result is that the hypotheses involve the functions $f_1, \ldots f_d$, and these are not, in general, uniquely-determined by the values of f on X. Thus the result is an extension theorem for 1-jets, not functions. In typical applications, f is given, and the f_j 's are not. So there is a need for a result which determines whether or not a given function f has an extension, and which involves only conditions that can be checked by explicit calculation. We get such a result by introducing the bundle of sequentially-calculable bounded point derivations on X.

Throughout the paper, d denotes a fixed positive integer, and X denotes a fixed closed subset of \mathbb{R}^d . Let $\operatorname{Tan} \mathbb{R}^d$ denote the tangent bundle of \mathbb{R}^d , that is, the set of ordered pairs (a, u), where $a \in \mathbb{R}^d$ and u is a linear functional mapping $\mathbb{R}^d \to \mathbb{R}$. Alternatively, we may think of (a, u) as a linear functional on the space C^1 of continuously differentiable real-valued functions on \mathbb{R}^d . For $f \in C^1$ we denote the value of the functional (a, u) at f by $D_u f(a)$. We identify \mathbb{R}^d with its dual, via the usual inner product, so that $\operatorname{Tan} \mathbb{R}^d$ is identified with $\mathbb{R}^d \times \mathbb{R}^d$. We denote the projection $(a, u) \to a$ by π .

The space C^1 becomes a Frechet algebra when endowed with the usual topology and pointwise multiplication. The subset

$$I(X) = \{ f \in C^1 : f = 0 \text{ on } X \}$$

is a closed ideal in C^1 , and hence the quotient algebra $C^1(X) = C^1/I(X)$ becomes a Frechet algebra when endowed with the quotient topology. The algebra $C^1(X)$ may be thought of as a space of functions on X, namely those functions having C^1 extensions. For $a \in X$, let I_a denote the (maximal) ideal in $C^1(X)$ defined by setting $I_a = \{ f \in C^1(X) : f(a) = 0 \}$. A bounded point derivation on the algebra $C^1(X)$ at the point $a \in X$ is an element $L \in C^1(X)^*$ (the space of continuous linear functionals on $C^1(X)$) that annihilates the constants and the ideal I^2_a . Equivalently, L is an element of $C^1(X)^*$ that satisfies

$$L(fg) = f(a) Lg + g(a) Lf$$

whenever f and g belong to $C^1(X)$. We denote the space of all bounded point derivations on $C^1(X)$ at the point $a \in X$ by J(X, a), and we define

$$J(X) = \{(a, L) : a \in X, L \in J(X, a)\}.$$

Thus J(X) is a subset of $\mathbb{R}^d \times C^1(X)^*$, and is closed in the weak-* topology of the dual of $\mathbb{R}^d \times C^1(X)$. We endow J(X) with the relative topology. The natural surjection $C^1 \to C^1(X)$ induces a continuous injection $J(X) \to J(\mathbb{R}^d) = \operatorname{Tan} \mathbb{R}^d$. Furthermore, it is easily seen that the image of J(X) is closed, and since $\operatorname{Tan} \mathbb{R}^d$ is locally-compact, it follows that J(X) is homeomorphic to its image, and hence may be regarded as a closed subset of $\operatorname{Tan} \mathbb{R}^d$. From this point of view, J(X, a) is a subspace of $\pi^{-1}(a)$. In general, the dimension of J(X, a) may be any integer between 0 and d, inclusive.

Let $\mathscr P$ denote the linear span of the point masses in X, regarded as elements of $C^1(X)^*$. For $L \in \mathscr P$, we denote by $\operatorname{spt} L$ the set of points of X that occur in L. If L_n is a sequence of elements of $\mathscr P$, and a belongs to X, then we say that $\operatorname{spt} L_n \to a$ if for each $\varepsilon > 0$ there exists a positive integer m such that $\operatorname{spt} L_n \subset \{y: |y-a| < \varepsilon\}$ whenever n > m. We say that an element $L \in C^1(X)^*$ belongs to the space $J_c(X, a)$ if there exists a sequence $L_n \in \mathscr P$ converging weak-* to L such that each L_n annihilates the constants, and $\operatorname{spt} L_n \to a$.

Lemma. $J_c(X, a) \subseteq J(X, a)$.

PROOF. Suppose $f \in C^1(X)$ and $f \perp J(X, a)$. Then $f \in \text{clos} I_a^2$. It is easy to see that I_a^2 is contained in the closure of the ideal

 $\{g \in C^1(X): g=0 \text{ on a neighbourhood of } a\}.$

Hence $f \perp J_c(X, a)$. The result follows by the separation theorem, since J(X, a) is weak-* closed.

We define $J_c(X)$ as the subset of J(X) given by

$$\{(a, L): a \in X, L \in J_c(X, a)\}.$$

We call $J_c(X)$ the space of sequentially-calculable bounded point derivations on $C^1(X)$. We shall see that $J_c(X)$ is always dense in J(X), but in general they need not coincide. Let L be in $J_c(X, a)$, and let f be a real-valued function on X. We say that Lf

exists and equals $t \in \mathbf{R}$ if

$$\lim_{n \to \infty} L_{n} f$$

exists and equals t whenever $\{L_n\}^{\infty} \subset \mathscr{P}$ is a sequence converging weak-* to L such that $L_n 1 = 0$ and $\operatorname{spt} L_n \to a$.

Theorem. Suppose f is a real-valued function on a closed set $X \subseteq \mathbb{R}^d$, and suppose $D_u f(a)$ exists and is uniformly continuous as a function of (a, u) on $J_c(X)$. Then f has a C^1 extension to \mathbb{R}^d .

PROOF. Suppose f satisfies the hypotheses.

We assert that f is continuous on X. For otherwise there would exist points a and a_n (n=1, 2, 3, ...) belonging to X, such that $a_n \to a$ and $f(a_n) \leftrightarrow f(a)$. Passing to a subsequence we could assume that

$$\frac{a_n-a}{\mid a_n-a\mid}\to u\in\mathbf{R}^d.$$

Then $u \in J_c(X, a)$, and

$$\frac{g(a_n) - g(a) - \left| a_n - a \right| D_u g(a)}{\left| a_n - a \right|} \to 0$$

whenever $g \in C^1(X)$; hence by the hypotheses,

$$\frac{f(a_n)-f(a)-\left|a_n-a\right|D_uf(a)}{\left|a_n-a\right|}\to 0,$$

hence $f(a_n) \to f(a)$, which is a contradiction.

We define $V(a) = \pi^{-1}(a) \cap \operatorname{clos} J_c(X)$, for $a \in X$, and we set $X_j = \{a \in X : \dim V(a) \ge j\}$, for $j = 0, 1, \ldots, d$. Then each X_j is a closed subset of X_j , and

$$X_d \subset X_{d-1} \subset \ldots \subset X_1 \subset X_0 = X$$
.

By adding a remote closed ball to X, if necessary, and defining f=0 on this ball, we may ensure that X_d is nonempty. For $a \in X$, let R_a and S_a denote the orthogonal projections of $\pi^{-1}(a) = \mathbb{R}^d$ on V(a) and $V(a)^{\perp}$, respectively.

Define $f^*(a) = f(a)$ for $a \in X$, and $D_u f^*(a) = D_u f(a)$ for $(a, u) \in J_c(X)$. Extend $D_u f^*(a)$ by continuity to $\operatorname{clos} J_c(X)$. Then $D_u f^*(a)$ is defined and continuous on $\pi^{-1}(X_d)$, and satisfies the condition

$$\frac{f^*(x_n) - f^*(y_n) - D_{x_n - y_n} f^*(a)}{|x_n - y_n|} \to 0$$
 (1)

whenever $a \in X_d$, $x_n \in X$, $y_n \in X$, $x_n \to a$, and $y_n \to a$.

Construct, in the usual Whitney fashion, a locally-finite covering $\{Q_n\}^{\infty}_1$ of $X_{d-1} \sim X_d$ by open cubes Q_n with the side of Q_n comparable to the distance from Q_n to X_d . Take corresponding C^1 functions ϕ_n such that

$$0 \le \phi_n \le 1,$$

$$\operatorname{spt} \phi_n \subset Q_n,$$

$$\Sigma \phi_n = 1 \text{ on } X_{d-1} \sim X_{d}.$$

For each n, take a point $a_n \in X_d$ that is as close as any other point of X_d to Q_n . For $(a, u) \in \pi^{-1}(X_{d-1} \sim X_d)$, define

$$D_{u}f^{*}(a) = D_{R_{n}u}f^{*}(a) + \sum_{n=1}^{\infty} \phi_{n}(a) D_{S_{n}u}f^{*}(a_{n}).$$

For $(a, u) \in V(a)$, we have $R_a u = u$, $S_a u = 0$, so this formula is consistent with the previous definition of $D_u f^*(a)$ in this case. It is easy to check that $D_u f^*(a)$ is continuous on $\pi^{-1}(X_{d-1})$ and satisfies the condition (1) whenever $a \in X_{d-1}$, $x_n \in X$, $y_n \in X$, $x_n \to a$, and $y_n \to a$.

Continuing, we extend $D_u f^*(a)$ in turn to $X_{d-2}, X_{d-3}, \ldots, X_1, X_0 = X$. In the end, $D_u f^*(a)$ is a continuous function on $\pi^{-1}(X)$, and satisfies the condition (1) whenever $a \in X$, $x_n \in X$, $y_n \in X$, $x_n \to a$, and $y_n \to a$. The classical Whitney extension formula (Stein, p. 177, (18)) then yields an extension of f^* to R^d that belongs to the class C^1 .

Corollary. $J_c(X)$ is dense in J(X), that is, each bounded point derivation on $C^1(X)$ is the weak-* limit of a sequence of sequentially-calculable bounded point derivations.

PROOF. Suppose f belongs to $C^1(X)$, and $D_u f(a) = 0$ whenever $(a, u) \in J_c(X)$. Then the extension f^* constructed in the proof of the theorem satisfies $D_u f^*(a) = 0$ whenever $(a, u) \in \pi^{-1}(X)$. Thus $D_u f(a) = D_u f^*(a) = 0$ whenever $(a, u) \in J(X)$. Since the topology on J(X) is the weak-* topology, the result follows by the separation theorem.

REFERENCE

STEIN, E. M. 1970 Singular Integrals and Differentiability Properties of Functions. Princeton.