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ABSTRACT

We remove the nonconstructive hypotheses from the C' case of Whitney's
extension theorem. For a compact set X< R? we introduce the space J(X) of
sequentially-calculable bounded point derivations on the algebra C*(X'). We show
that if / is continuous on X and D,f(a) exists and is uniformly continuous for
(a, 1) € J(X), then f has an extension to R’ in the class C'.

The object of this paper is to remove the nonconstructive hypotheses from the
C! case of Whitney's extension theorem. We work with real-valued functions on
RY, but the main result goes through for functions mapping any real C! manifold
into a topological vectorspace.

The statement of Whitney’s theorem is as follows:

Let X be a closed subset of R?, and let f be a continuous function on X. Suppose

there exist continuous functions fy, . . . f; on X such that, for each point ae X
and each £ >0, there exists 6 >0, such that

O~ ()= I Oy=x) S |sely=x|

whenever xe€ X, ye X, | x—a| <6, and | y—~a|<é. Then [ has a continuously
differentiable extension to R°.

The only unsatisfactory feature of this result is that the hypotheses involve the
functions f, . . . f;, and these are not, in general, uniquely-determined by the values
of f on X. Thus the result is an extension theorem for l-jets, not functions. In
typical applications, f'is given, and the f’s are not. So there is a need for a result
which determines whether or not a given function f has an extension, and which
involves only conditions that can be checked by explicit calculation. We get such a

result by introducing the bundle of sequentially-calculable bounded point derivations
on X,
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Throughout the paper, d denotes a fixed positive integer, and X denotes a fixed
closed subset of RY. Let Tan R denote the tangent bundle of RY, that is, the set of
ordered pairs (@, u), where ae R? and u is a linear functional mapping RY — R.
Alternatively, we may think of (g, ¥) as a linear functional on the space C* of con-
tinnously differentiable real-valued functions on R% For fe C' we denote the
value of the functional (g, u) at f by D,f(a). We identify RY with its dual, via the
usual inner product, so that Tan R? is identified with R‘xR?. We denote the pro-
jection (@, ) — a by =. .

The space C* becomes a Frechet algebra when endowed with the usual topology
and pointwise multiplication. The subset

IX)={feC':f=0on X}

is a closed ideal in C!, and hence the quotient algebra C'(X )=C!/I(X ) becomes a
Frechet algebra when endowed with the quotient topology. The algebra C(X')
may be thought of as a space of functions on X, namely those functions having C*
extensions. For a e X, let I, denote the (maximal) ideal in C!(X) defined by setting
I,={fe CXX):f(a)=0}. A bounded point derivation on the algebra C*(X) at the
point a€ X is an element L e C}(X)* (the space of continuous linear functionals
on CY'(X)) that annihilates the constants and the ideal ] 2. Equivalently, L is an
element of C*(X )* that satisfies

L(fe)=f(a) Lg+gl@ LS

whenever fand g belong to C'(X). We denote the space of all bounded point deriva-
tions on C*(X) at the point a € X by J(X, a), and we define

JX)={(a, L)y:ae X, LeJ(X, a)}.
Thus J(X ) is a subset of R¢x C}(X )*, and is closed in the weak-* topology of the
dual of RIxCYX). We endow J(X) with the relative topology. The natural
surjection C* ~ C!(X) induces a continuous injection J(X) —J(R‘)=Tan R*
Furthermore, it is easily seen that the image of J(X') is closed, and since Tan R? is
locally-compact, it follows that J(X') is homeomorphic to its image, and hence may
be regarded as a closed subset of Tan R?. From this point of view, J(X, ) is a sub-
space of 7~ 1(g). In general, the dimension of J(X, a) may be any integer between 0
and d, inclusive.

Let & denote the linear span of the point masses in X, regarded as elements of
CHX)*. For L e, we denote by sptL the set of points of X that occurin L. If L,
is a sequence of elements of 2, and a belongs to X, then we say that sptl, — g if for
each &> 0 there exists & positive integer m such that sptL, <= {y: l y—a !<s} whenever
n>m. We say that an element L e C'(X)* belongs to the space J (X, a) if there
exists a sequence L, & & converging weak-* to L such that each L, annihilates the
constants, and sptL, — a.

Lemma. J.(X, a)<J(X, a).

ProOF. Suppose fe C*(X ) and fL J(X, a). Then feclosl,>. Itis easy to see that
1,2 is contained in the closure of the ideal

{ge CY(X): g=0 on a neighbourhood of a}.
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Hence f.L J.(X, a). The result follows by the separation theorem, since J(X, a) is
weak-* closed.

We define J,(X ) as the subset of J(X') given by
{(a, L):ae X, Le J(X, a)}.

We call J(X ) the space of sequentially-calculable bounded point derivations on C YXx).
We shall see that J.(X ) is always dense in J(X ), but in general they need not coincide.

Let L be in J(X, a), and let f be a real-valued function on X. We say that Lf
exists and equals 1 € R if

lim L,/

exists and equals 7 whenever {L,}”, <# is a scquence converging weak-* to L such
that L,1=0 and sptL, — a.

Theorem. Suppose f is a real-valued function on a closed set X <R’ and suppose
D, 7 (a) exists and is uniformly continuous as a function of (a. u) on J(X'). Then f has
a C* extension to RY,

ProOF. Suppose f satisfies the hypotheses.

We assert that f is continuous on X. For otherwise there would exist points a
and a, (n=1, 2, 3, . . .) belonging to X, such that @, — g and f(a,) + f(a). Passing
to a subsequence we could assume that

a,—a
- | — UE Rd.
|a,—a|

Then u e J (X, a), and

ga,)—g(a)—|a,—a| D, g(a) .
|a,—a|

0

whenever g € C*(X ); hence by the hypotheses,
f(an)_f(a)_, a,—a ‘ Duf(a) -

|a,—a]

0,

hence f(a,) — f(a), which is a contradiction.
We define V(@)=n"'(a) nclos/(X), for aeX, and we set X;={aeX:
dim¥(a)2j}, for j=0, 1, ..., d Then each X; is a closed subset of X, and

XdCXd—lc' . .CX1CX0=X.

By adding a remote closed ball to X, if necessary, and defining /=0 on this ball, we
may ensure that X, is nonempty. For ae X, let R, and S, denote the orthogonal
projections of 77 *(a)=R* on V(@) and V(a)*, respectively.

G-

~9

—

~9
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Define f*(a)=f(a) for ae X, and D,f*(a)=D,f(a) for (a, u)e J(X). Extend
D, f*(a) by continuity to closJ(X). Then D,f*(a) is defined and continuous on
7~ (X)), and satisfies the condition

F*G) =/ *On) = Doy f @)
} Xn= Vn I
whenever ae X, x, € X, y, € X, x, - g, and y, — a.

Construct, in the usual Whitney fashion, a locally-finite covering {Q,}*, of
X,.,~X, by open cubes Q, with the side of O, comparable to the distance from Q,
to X,. Take corresponding C* functions ¢, such that

02¢,51,
spt ¢HCQ"’
2 d)": 1 on Xd—INA,d'

For each n, take a point a, € X, that is as close as any other point of X, to @,. For
(a, W) e~ HX,_{~X,), define

0 M

Duf*(@)= D f *(@)+ £ 6,(@) Dsyuf *(@)

For (4, u)e V{(a), we have Ru=u, S;u=0, so this formula is consistent with the
previous definition of D, f*(a) in this case. 1t is easy to check that D, f* (a) is
continuous on 7~ *(X,_,) and satisfies the condition (1) whenever ae X,_,, x, € X,
v,eX,x,—aand y, = a :

Continuing, we extend D, f*(@)inturn 10 X;_,, Xy_5. ... ., X}, Xo=X. 1Inthe
end, D, f*(a) is a continuous function on n~*(X), and satisfies the condition (1)
wheneverae X, x, € X, y,€ X, x, — a, and y, = a. The classical Whitney extension
formula (Stein, p. 177, (18)) then yields an extension of /* to R? that belongs to the

class CL.

Corollary. J.(X) is dense in J(X), that is, each bounded point derivation on C'(X)
is the weak-* limit of a sequence of sequentially-calculable bounded point derivations.

Proor. Suppose f belongs to C'(X ), and D,f(a)=0 whenever (a, u)e J (X).
Then the extension f* constructed in the proof of the theorem satisfies D, f*(@)=0
whenever (@, w)en™*(X). Thus D,f(a)=D,f*(a)=0 whenever (a, u)e J(X).
Since the topology on J(X ) is the weak-* topology, the result follows by the separation
theorem.
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