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ABSTRACT. For 0 < a < 1, we characterise those compact sets X in the
plane with the property that each function in the class lip(e, X) that is
analytic at all interior points of X is the limit in Lip(a, X) norm of a
sequence of rational functions. The characterisation is in terms of Hausdorff
content.

1. If E is a closed subset of the complex plane C, and f is a bounded
complex-valued function on E we define the modulus of continuity w; by
setting

wr(r) = sup{[f(x) —f(»)|: %,y € E, |x — y|< r}

whenever » > 0. Thus «; is a nondecreasing function, w(0) = 0, and f is
uniformly continuous on E if and only if w; is continuous at zero. For

‘0 < a <1 we define

[ Neze= sup{r""wf(r): r> O},
Lip(e, E) = {f: [,z < ),

lip(a, E) = {f € Lip(a, E): r™%wy(r) - 0 as r0}.

When given the norm

INer =1 aet I Nue

(where || f]|, ¢ 1s the sup norm), Lip(a, E) becomes a Banach algebra, and
lip(a, E) is a closed point-separating subalgebra [9]. This paper concerns the
question of approximation in Lip(a, X), for compact sets X, by rational
functions with poles off X.

Before stating the main result, we must define the Hausdorff contents M*
and MB. A measure function is a nonnegative increasing function defined on
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188 A. G. O'FARRELL

R*={r€R: t>0}. If h is a measure function and F C C, then the
Hausdorff content M, (F) is the infimum of all sums

> h(diam S),
S8

where § runs over all countable coverings of F by closed (or open) balls. In
case h(r) = r? for some B > 0, we write M, = M*. The set function M¥ is
defined by setting

ME (F) = sup{ M, (F): h is a measure function,
h(r) < r®, r=Pn(r)—0as r(0}.

THEOREM. Let X be a compact subset of C, and let 0 < a < 1. In order that
every function in lip(a, X)) which is analytic on the interior of X be the limit in
Lip(a, X) norm of a sequence of rational functions, it is necessary and sufficient
that there exist a constant p > 0 such that

M"Y (D\NX)> pM (D \intX)
whenever D is an open disc.

It is worth noting that the condition for approximation is purely metric, in
contrast to the conditions which have been obtained for uniform approxima-
tion [12].

The necessity of the condition is proved in §§2-8. We introduce capacities
in §2 and show that if two spaces have the same closure then the correspond-
ing capacities coincide. In §§3-7 we apply a generalisation of Melnikov’s
Theorem [10] in order to relate the capacities corresponding to rational

Fram Ats man 1 thn mrmtasmta M l+a ... A yll+a TL
functions and ip a aucu_y tic funct tions to the contents A; ana M, . 1n€

proof of sufficiency in §§10-15 is modelled on the Vitushkin approximation
scheme [12], [6], [8] as modified by Davie [3]. We make heavy use of the
metric character of the capacities. We give some applications in §§16-23.

Throughout the paper, a is fixed, 0 < a < 1; Z denotes the set of integers,
and Z* = Z 0 R*; 2 is the Riemann sphere; ©) is the space of complex-val-
ued C* functions with compact support. If f is continuous on C and ¢ € %
we define

f(2) = 1§
T.f(z) = f (z_g()aqo

where m denotes Lebesgue measure on the plane. For an exposition of the
properties of this “7, -operator”, see [6]. A set B of continuous functions on C
is said to be T-mvanant if T.f € B whenever f € B and ¢ € 9. The

........ T T msser T AT wvrith mmrenmnt o e a T el s N emmaenn Lo o~ AL o~ GD
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FRACTIONAL LIPSCHITZ NORMS 189

In fact
|Teflac < Kn(@{llol, + 4V ¢ll.}:

where K is a constant depending only on «,
d =diamsptp, m(d) = sup{sTw(s): 0 <s < d}.

The symbol X always stands for a compact subset of C, R (X) is the
subspace of Lip(«, C) consisting of those functions which agree on some
neighbourhood of X with a rational function, and R(X ) is the space of
functions in Lip(a, C) which are analytic on a neighbourhood of X. If B is
any subspace of Lip(a, X), then the closure of B with respect to the norm
| llox is denoted [B], x, or just [B],. If B contains the constants, then this
coincides with the closure with respect to the norm ||- ||, . For any X,

(RO Lx=[RXO ], »
This assertion is the a version of Runge’s Theorem, and the classical proof of
Runge’s Theorem is easily modified to prove it.
As a technical convenience, we assume that the diameter of X does not
exceed 1.

I am grateful to T. Gamelin and J. Garnett for valuable conversations. The
Decay Lemma of §12 is the work of Garnett. I am grateful to the referee for
suggesting the argument of §4.

2. We follow established custom in denoting the algebra of all continuous
complex-valued functions on X by C(X) and denoting the subalgebra of
functions analytic on int(X) by 4 (X). We further define

A*(X)=Lip(a, X) N A(X), A, (X) = lip(a, X) N A(X),
so that 4% and A4, are closed subalgebras of Lip a. In view of the extension
theorem [11, Chapter VI], a subspace V ¢ 4%(X) may be regarded as a
subspace of Lip(a, C) (we may identify V with the set of functions in
Lip(a, C) whose restrictions to X lie in V), so T-invariance makes sense for
such subspaces. To each T-invariant subspace V of 4%(X) we associate a
capacity y(V, ° ), a nonnegative increasing function defined on the family

{D} of open discs: we say a function f € V is D-admissible if f is analytic off
a compact subset of D, f(c0) = 0, and || f]|, ¢ < 1; we set

Y(V, D) = sup{|f'(0)|: f € V, fis D-admissible}.

LEMMA. Let V and W be T-invariant subspaces of A*(X). Suppose V and W
have the same closure in Lip(a, X) norm. Then y(V, D) = y(W, D) for every
open disc D.

Ponnt Tt cviffireae A chinw that



190 A. G. O'FARRELL

y(V,D) = y([ V]a, D).
It is clear that

y(V,D) < v([V]. D).

To prove the opposite inequality, let D be a fixed open disc and let e > 0 be
given. Choose f € [V], such that fis D-admissible and

|f(0)] > v([V]w D) — &
Choose a sequence {f,}° of elements of V such that || f, — fll,x — 0. For
each n the extension theorem ensures the existence of a function

gn S Llp(a’ C)

such that g, = f, —fon X and | gllac < 4lf = fllax- Let b, =f+ g,
Then h, € V and ||h, = flloc—0 as n—> + .. Choose ¢ € & such that

spt o C D and ¢ = 1 on a neighbourhood of the set of singularities of f.
Then qu = f, T¢hn € V, and

1T = Alac=1To (n = N
< Kjty = flop {9l + diam DIV |, },
by §1. Thus || T4, — flloc — 0, and hence (7, 4,) (o) — f'(e0), s0 that
Y(V,D) > 7([V]. D) — .

Since this holds for each ¢ > 0, we conclude that (x) holds.

We do not know whether or not the converse to this lemma is true in
general.

3. In order to apply Lemma 2 to rational approximation we have to
describe the capacities y(¥, ) in the cases V' = R(X) and V = 4,(X).
Melnikov’s Theorem provides the key. It relates certain capacities to the
Hausdorff contents M,. Before stating it we define a special class of “mod-
ulus of continuity functions”.

Consider a concave increasing function w(r), defined for » > 0 and con-
stant for r > 1, with w(0) = 0, and such that

(D) &’(r) exists for r > 0;

(2) there exists a constant L, > 0 such that w(r) < Lyre’(r) for0 < r <3;

(3) there exists a constant L, > 1 such that ro’(r) < (L, — Dw(r)/L, for
0<r<j.

Such a w we call a modulated function. To each modulated function is
associated a measure function h, defined by A(r) = rw(r), and a capacity
7(w, +) defined on arbitrary bounded sets E C C by

7(w, E) = sup{|f(0)|: fis analytic on a neighbourhood of

SN T framY =0 ¢y, < 31
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Here w; refers to the modulus of continuity of f as a function on C.

MELNIKOV’S THEOREM. Let w be a modulated function. Then there is a
constant K (w) such that

K~ 'M,(E) < 7(w, E) < KM, (E)

whenever E is compact or E is open and bounded. K(w) may be taken to be
KL, + L,), where K, is a certain universal constant.

Actually, this is a slight extension of Melnikov’s result. He proved it in case
w(r) = r? for some B, 0 < B < 1, and in that case K (w) may be taken to be
KoB (1 — B)~ L. His proof [10] carries over with trivial changes. We omit
the details.

An example of a modulated function other than the various r%, 0 < 8 < 1,
is obtained by fixing 0 < 6 < 1 and setting

rP{8-1—log2r}, 0
o(r) = 1
2

1
< r<5,
61278 <r< co.

4. LEMMA. Let w(r) be a nonnegative function such that w(r) < r* and
r %w(ry—0. Let ¢ > 0 and B > «a be given. Then there exists a modulated
SJunction w,(r) with the following properties:
MDA =-ewlr) Lw(r) <r*for0<r<
(2) aw(r) < rwi(r) < Bw(r)for0 < r<
3) r~%w,(r) > 0 as r|0.

1
2

1
2

PrOOF. In proving this, we may suppose that 8 < a(l — €)~!. Choose a
monotonically-decreasing sequence of piecewise smooth functions y; such
that

@B = (/e < Y(r) < rf,
(3) e (r) < n(r) < By (r),
(6) ¥;(r) < r®/j in a neighbourhood of the origin.
Such ;’s may be constructed as follows: Choose §; > «, put

@;(r) = max{r®/j,r%)}, and

r 9;(5)
Ny

zpj(r) = min{a'/;

If 6; is sufficiently close to @, properties (4), (5) and (6) are satisfied, as is seen
by a routine calculation.

Set (r) = lim ¢,(r). It follows easily that

ds,x}zj_l(r)}.

r @(s) 4

o(r)=a [

m
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satisfies properties (1), (2), and (3). Verification is again routine. This com-
pletes the proof.

Fix 8 = (1 + a)/2. For each f € lip(«, C) with || f], < 1, and each ¢ > 0,
choose a modulated function w,(r) such that

(1 = w(r) < wy(r) < re,

ae,(r) < ri(r) < Bey(n),

r~%w,(r)—0as r|0.
Let &, denote the family of all functions obtained in this way. Clearly, we

may apply Melnikov’s Theorem to all w, € ¥, at once, using the same
constant K.

5. COROLLARY. Let X C C be compact, V = R(X). Then for all open discs
D

K~ (V,D) < M'""*(D\X) < Ky(V, D),
where K depends only on a.

Proor. Choose a sequence of open sets { U} X such that each set bdy(U,)
is a finite union of smooth curves. Then

Mt (D\X) = liTm M (D\U,).
nfoQ

,2,3,...,wehave

—
£
a
~

\:—F
—r
C
—
=

]
ek

[>2]

A (X)yc Vc U 4%(X,.),

m=1

where X, = clos(U,). Hence for each open disc D,
v(4°(X,), D) < v(V, D) < lim y(4%(X,,), D).
myjoo
Applying Melnikov’s Theorem with w(r) = r® and F= D\ X,
7(w, E) = y(4%(X,), D)), we obtain
K~ %(4%(X,),D) < M'"**(D\X,) < Ky(4%(X,), D),

forn=1, 2, 3,..., where K depends only on «. Taking limits we get the
desired result.

6. In the definition of M} * = it suffices to consider those A of the form raw(r)
forw e %,.

(so that

7. COROLLARY. Let W = A_(X). Then for all open discs D,
K~ (W,D) < M**(D\intX) < Ky(W, D),
where K depends only on a.

PROOF. Let f € W be D-admissible, and let € > 0 be given. Then there
exicte v & F cuch that (1 — &lw. < w. Thus



s
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(1 = &)|f'(e0)| < 7(w, D \int X).
If h(r) = rw(r), then Melnikov’s Theorem yields
T(w, D \int X) < K(w)M, (D \int X).
Thus
(1—-¢ey(W,D) < KM!**(D \int X),

where K = sup{Ky(L, + L,): @ € ¥,} depends only on «. This proves the
first inequality.

For the second, fix w € ¥, and let A(r) = rw(r). Let f € C(Z) be analytic
off (D \int X), with &, < w, f(c0) = 0. Then f € W and f is D-admissible.
Hence | f'(e0)] < y(W, D). Thus 7(w, D \int X) < y(W, D). By Melnikov’s
Theorem

K@)~ 'M,(D\int X) < y(W, D).
Since this holds for every w € %_, we conclude that

K~'M**(D\int X) < vy(W, D),

with K as above.
8. Combining the results of §§1, 2, 5, and 7, we deduce the necessity of the
condition of the theorem. In fact, if [R], = 4_(X), then

M'**(D\NX) > KM}**(D \int X),

for every open disc D, where K > 0 is a constant which depends only on a.

9. REMARK. One might wonder whether it is always possible, given a
modulated function w, to find functions f € 4(X) such that w; < w but
w(r)” wf(r) + 0 as r - 0. Putting it another way, if w,(r)w,(r)™' — 0 asr—0,
are there any functions f in 4(X) such that wr < w, but w; % o(w,;)? The
answer is yes. This follows from some results of DolZenko [4].

10. the first step towards proving the sufficiency of the approximation
condition is a lemma which gives an estimate for the uniform norm in terms
of the Lip « norm.

LeEMMA. Suppose E C C is bounded, f is analytic on. 2\ E, f(o0) = 0, and
f € Lip(a, C). Then

1 lc < 27 (diam E)| A,

Proor. There is a circle C of radius diam E which encloses E. Since
f(o0) = 0, then [f @} = 0. Hence, if f = u + iv, then [.u dd = [0 dd = 0.
Thus u and v each have a zero on C. Thus for x inside S,

ju(x)] < 2diam E)||f]|,  |o(x)] < (2 diam E)°|| ).,

hence
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|/(x)| < 2'**(diam E)*|| /] »
and the result follows by the maximum principle.

The above estimate is somewhat crude, in that it depends only on the
diameter of E. A more refined version is obtain in §14.

11. Now fix X compact in C and abbreviate R = R(X), 4 = 4,(X),
v(D) = y(&, D), v,(D) = y(A4, D). Let c¢(D) denote the centre of the disc
D, and let 7D denote the disc with centre ¢(D) and radius equal to 7 times
the radius of D. For any function f which is analytic on a neighbourhood of
00 We may write

f(2) TR B & +

zZ)=a e
Pz=e@)  (z- (D))

for large z. Here a, = f(0), a, = f'(), and we define B(f, D) = a,. If

a, = a, = 0, then 8(f, D) does not depend on D.

LEMMA. Let D be an open disc of radius r, and let f € R be D-admissible.
Then

|B(f, D)| < Kry(D),

where K is a constant depending only on o. For f € A the same inequality holds,
but with vy replaced by v,.

PrROOF. Let f € R be D-admissible. Then f is analytic off D, f(c0) = 0,
and || f|l, < 1. We define the function g € R by setting

g(2) = (z = ¢(D))f(2) = f(e0)-

Then g(0) = 0, g'(0) = B(f, D), and we claim that || g||, < K,r, where K;
depends only on «.

In proving this claim we may assume ¢(D) = 0. Let z, w € C, z # w. We
consider four cases, which together cover all the possiblilites.

Case 1.z,w € 3D. Then

]zf(a) - wf(w)| . H |f(z) -—f(w)| +lz — w| |f(w)|
e f =
<3r Al 617

< Kir |/, by §10
< Kir.

Cree?2 » we CAN2YD |l — wl > r Then
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|l2f (2) — wf (w)| < |2f (2)| . |wf(aw)|

|z—- w|a re r

2] id

<2217 +170m) < rt=e{ D+ O |
< KoM, < Kol < Ko

In the third inequality we used the uniform norm decay estimate [6, p. 201],
and in the fifth we again applied §10.
Case 3.z,w € C\2D, |z — w| < r. Then

|2/ (2) = wf(w)|

2 = w|°
— 1 1 11
Iz — wla 2mi ‘/]-§‘|=r§f(§){ §—z {-w } d{l
Kar| /. 2 — wl
<— d¢
2= w Jomr T

< Ksr'*e| Al )z — w)' T < Ko
Cased.z € 2D,w & 3D. Then
|2f (z) — wf(w)] . |2f (2)] . wf (w)|

o

lz — wla r r

i i

rtm

< 2r70 ], + < Kgr' ™| Al < Koqr.

Hence the claim is true, so that (Kgr) ™ 'g is D-admissible. Thus
|B(f. D)| =|g' ()| < Kgry(D).
The assertion about A4 is proved similarly.

12. DECAY LEMMA (GARNETT). Let D be a disc of radius r, and let z € C,
with d = dist(z, D) > r. Then

(1) |f(2)| < Ky(D)| N,/ 4
and
@ 72| < Ky(D)|f]./ 2>

whenever f € R.. There is a similar estimate for f € A, with y replaced by v,.

Proor. (1) D \ X may be covered by a finite collection {S;} of open
squares with sides parallel to the axes, such that
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side S,)' YE< AaM (D \ X))/,
J

and no square is contained in the union of the rest. Arrange the squares in an
order of nondecreasing side-lengths, and form H, = §,, H, = $;\ S|, H; =

S5\ S;\ S,, and so on. For each i, let T; = bdy H,, and choose {; € int H,.
Observe that the length of T, is at most 4(side S;). Then

1 f(§)
IOl =\ 2 2 7=z €
1 f(&) = f(§)
\2—ijr = &
(side S;)' " KM (D\X)|1,
<3 Sy, < M

K.,y(D
< 24 d)”j““, by Corollary 5.

The estimate for f'(z) is obtained in a similar way.

To prove the corresponding estimate for f € 4, first choose a modulated
function w such that

%wj(r) <A (1), 0<r<i,
w(r)<ry, 0<r<3,
r%(r)—»>0  asrl0.

Set h(r) = rw(r). An argument like that above shows that

[f(z)[ < KM, (D \intX)“j]la/d,
and so

KM (D \int X)| 1], < K@),

1f(2)] < y — by §7.

13. LEMMA. Let D be an open disc, s'** = M'**(D \ X), and let {B;} be a
family of discs of radius s, each of which is contained in D, such that no point

belongs to more than p of the B,. Then there is a constant K, depending only on
o, such that

(1) DM@ (BANX) < KpM'** (D \ X),

J

nnr] n’cn
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2
J «

whenever f, € R is B-admissible,j =1, 2, .

(2) < Kp

ProoF. Fix ¢ > 0, and choose a covenng {D,} of D \ X by discs with radii
{r,} such that each r, is no greater than s, and

> rite < Mt (D\X) + e
n

Then the D, cover each B;\ X, and no D, meets more than K,p of the B,
Thus

> MUY (BANX)< Kp2 r," < Kip{M'"™*(D\X) + ¢}.

J
This proves (1).
Now let jj € A be Bj-admissible, j=12,....Fixx,y € Cand consider

|5 (x) = SN/ 1x = ol

We divide the integers j into classes F,, correspondingtom =0, 1, 2, 3, .
as follows. We say j € F, if m is the greatest integer not exceeding

s~ min{dist(x, B;), dist(, B)}.

Observe that the number of elements in F,, does not exceed K, pm
Form = O or 1 andj € F,, we use the crude estimate

1) = O/ 1 = 27 <[ fll. < 1

Form > 1,j € F,, we consider two cases.
Case 1. |x — y| > s. Then

|f:(x) = L)) < | ()| +|£()]
e = I* s*
K3Y(BJ)II-6!|a
S T (m)se

< KsY(Bj) .

msl+¢x

Case 2. |x — y| < s. Since j € F,, there is an arc T joining x to y such that
the length of I’ does not exceed 6|x — y|, and dist(T, B;) > ms. Thus

[5G = O _ [UrS(2) |
e =y x —y|"
K TV Kar(B)

s \2 S 2 il4a

by §12
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Thus in either case
|f(x) — (y)l KMt (B, \X)

1+a

|x—yl )

Let f = 3 . Then, abbreviating M I**(B,\ X) = M, we have

) =IO < 15 = 5]
<X a
=1 PR Al
KM,
K6p + 2 l+a

< Kgp + K5K1P by (1)
= K,p.

14. This lemma allows us to improve the estimate for I j][u of §10.

COROLLARY. Let D be an open disc and let f € R.(X) be D-admissible. Then

1A < Ky(D)*2.

ProoF. In proving this we may assume that X contains a neighbourhood of
3D \ D, and we do.
Cover the set of singularities of f by discs %BJ C D of side

§ = M1+¢x (D \ X)l/(l+a)

in such a way that no point belongs to more than 100 of the B;. Choose
functions ¢, € 5D such that 0 < @, < 1, spt @ C B,|| V¢, < 4/s, and
Zp;=1on Us B;, which is a neighbourhood of the set of singularities of f
(cf. [3]). Let f;=T_f Then f= 2f [ E R, f; is analytic off B;, and
f(e0) = 0. Also || £, "< K, by the T, estimate, so that K,”f; is B, _admissible,

Fix z € C, and divide the indices j up into classes again: say j € G,, if m is
the greatest integer not exceeding s~ ! dist(z, B)). Form > 1 and j € G,, we
have

|5(2)| < Kyy(B;)/ms

by the Decay Lemma, §12. Thus
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f(2)| <Z|5(2)] < K| A+ S 2 |f<z)|

m=2 j&

<K4{s°‘+ § > Y(Bj)}=K4s {1+ > o> (1+i}

m=2 jEG,, ms m=2 jeg, MmS

1/2

( } (ct. [6, p. 201, 2.6])

< Kg5%41 +

2 -

< K¢s*, by §13 and §15.

Thus | f]], < Kes® < Kyy(D)/0+),
15. We are now in a position to prove the sufficiency of the condition for
approximation. In fact, we will prove a slightly stronger statement.

Suppose there exist constants p >0, 7 > 1 such that for each point x €
bdy X and each disc D centered at x,

MM (rD\X) > pM[**(D \int X).
Then [R], = A, (X).

Throughout the proof K,, K,, K, ... stand for constants which may
depend on a, p, T and || f]|,, but not on any other variables.

Suppose p and 7 exist as in the statement. Then for each open disc D of
radius r centered at a point of C\ int X we have

MY (rD\X) > 47 \uM ) (D \int X),

hence y(7D) > K,v,(D) for each such disc D.

Fix f € A. We shall prove that f may be approximated in Lip(a, X)) norm
by elements of R.. First, we extend f to C so that the extension (also denoted
by f) lies in lip(e, C) and is analytic off some disc. Fix § > 0. Let {D,}° be a
covering of C\ int X by open discs of radius § centered at points of C\int X

" and such that no disc D, meets more than 100 others. Let {g,}7° C D be a

sequence of functions such that 0 < ¢, < 1, spt @, € 2D,, || Vo,ll, < 467,
and Z7°p, =1 on UPD,. Let f, = T”f Then f, € 4, f, = 0 except for a
finite number of indices n, and f= X7%,. Let n(r) = r %w/(r), so that
n(r)— 0 as r|0. For each n, f, is holomorphic off 2D,, f, () =0, and

“fn“a < KZ'T]((S).
Now fix n and, following Davie [3], let

. +a 1/(1+a)
= 5= min{8, M'** (3D \ X) }-

Cover the (closed) set of singularities of f, (a subset of 2D, \int X) by
centered discs B; C 2D, of radius r, in such a way that no point belongs to
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more than 25 of the B,. Select a collection {y;} C ° of functions such that
0<y <1, sptyy CZB | Vi, <4/r, and 2y, =1 on U B, which is a
neighbourhood of the set of singularities of f,. Let f* = T, f Then ffedf
is analytic off 2B;, f*(c0) =0, || ffll. < Km(d), and f 2 fF. From the

definition of v, we deduce that

| f/(0)] < Km(8)14(2B;) < Ksm(8)y(27B;), by hypothesis.
Thus there exist functions gj € R such that g* is analytic off 273}, g* (o) =
0, |l g*ll. < Ksn(8), and g'(c0) = f¥(c0). Let g, = T gf. Then g, € R, g, s
analytic off 3D,, g,(0) = O and g,’,(oo) = f (o). Also, by Lemma 13 (2),

” gn“a < K6TI(6)
We have

,B(f,,—g,,,D,,)=Z,3(f*—gj,D)—E,B(j*—&.*,Gj),
J

since f* — g* vanishes to second order at co. Hence by Lemma 11 and
Lemma 13 (1),

|B(f, — &» Du)| < 2 K;rv(B))n(8) < Kgy(2D,)®* /1 Oy (s).

We may choose a function h, € R, analytic off 2D, and vanishing at oo,
with ||A,]|, < 2 and h/(0) = y(2D,). Forming

ko= 8, + B(f, = 8 D)(h /1) E
(where we have abbreviated y = y(2D,)), we deduce that

lkall <1 8alla+ | B (S = 8w D)y 2| 12]
< Ken(8) + Koy =/ (8)||h,], < Kon(d)

by Corollary 14. Also k, is analytic off 2D, k,(c0) = 0, k,(c0) = g;(o0) =

fi(0), and B(k,, D,) = B(&u Dy) + B(fy = & D) = B(fn» Dy)-

Let g, = f, — k,. Then f = 3k, + 2q,. The first sum belongs to R. We
will show that the second sum tends to zero in Lip(a, C) norm as 6}0, so that
fE€[R],c

Clearly |ig,ll, < K,om(8), so that by Lemma 10, ||g,ll, < K;;6*n(8). Fix
two distinct points x, y € C. In order to estimate

=y 2 () ~ Za ()
we divide the indices n into classes F,, in the same way as in the proof of

Lemma 13, with s = 28. Thus n € F,, if ns is the greatest integral multiple of
s not exceeding

min{dist(x, 2D,), dist(y, 2D, )}.

The number of indices in F,, does not exceed K (m + 1).
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The function g, has a triple zero at oo, so that 8§ ~3(z — ¢,)’q,(2), the
function, is analytic on £\ 2D, (here ¢, = ¢(D,)). For z € bdy(2D,),

87 (z = ¢)’4.(2)| < 8]l < Ki2n(d),
hence by the maximum principle,
(*) |9.(2)| < K38°**n(8)d
whenever d = dist(z, 2D,) > s.
If k(z) is a bounded function, is analytic off a disc D of radius r, and

vanishes at oo, and 0 < R = dist(z, D), then the uniform norm derivative
decay estimate [12, p. 201] states that

[k'(2)] < 4r||k||, payp/ R*

If d = dist(z, D,) > 4s, take D =1dD,, so that |lgll,payp <
K83+ % (8)d 3 by (»), and conclude that

(%) 14,(2)| < Kys8%*+n(8)d

If n belongs to one of the first six F,, we use the crude estimate

1:(x) = @)/ ¥ = ¥|" <@l < Ksn(5).
If 6 < m € Zand n € F,,, we consider two cases.
Case 1. |x — y| < s. We have

ms < min{dist(x, 2D,), dist(y, 2D,)},

so there is a curve I' joining x to y, the length of which does not exceed
w|x — y|, with the property that dist(T', 2D,) > ms. Thus by (x*),

2.(x) = a.(»)] 4
e =" x ="
< 7K slx = y|' TP e (8)(ms) T < Kygn(8)m ™4,

fr K (z) dz

Case 2. |x — y| > s. Then by (%),

12,(x) — ¢.(»)] < |2, (x)] +2.(»)]
Ix — yIa sa

< 2K 587+ (8)(ms) = Kyn(8)m ™2,
Thus in either case
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12 ,8,(x) — Zq,(»)| s 19.(x) — q,(»)]

x = y|° no =)

5 o)
< 2 > Ken(6) + > > K187’I(6)m_3

m=0neF, m=6 n€F,,

5 + 00
< { EOKGKH(m + 1)+ Z6K18Kll(m + l)m_3}fl(5)
m= m=
= Kgn(9).

Since n(8) — 0 as 8]0, this proves that ||=q,l|, — 0 as 8]0, so we are done.

16. As a special case we obtain a characterisation of those compact sets X
on which all f € lip(a, X) may be approximated in Lip(a, X) norm by
rational functions.

COROLLARY. A necessary and sufficient condition that
[@l]a= lip(a, X)

is that there exist u > 0 such that M'**(D \ X) > ur'*® for every open disc
Dof radius r (0 < a < 1).

This follows from our theorem because M,**(D) = (2r)'*=
17. COROLLARY. If X has zero area and 0 < a < 1, then
[%]a= lip(a, X ).

ProOF. Let D be any disc of radius r. Then, denoting Lebesgue measure on
the plane by m, we have m(D \ X) = m(D) = @r% Let { B;} be a covering of
D \ X by discs with radii {r;}, 7, < r. Then

hence M**(D \ X) > r'* Thus the condition of Corollary 16 is satisfied,
with p = 1.

J. Garnett has shown the author how to give a direct constructive proof of
this fact. There is also an entirely different proof, based on duality.

18. COROLLARY. If 0 < a < l and M )**(bdy X) = 0, then
[R].=lip(a, X) N A(X).
Proor. If E, and E, are two subsets of C, then
M, (E\ U Ey) < M,"%(E)) + M, " %(E,).

This is an immediate consequence of the definition of M¥# and the subadditiv-
itv of M.. It follows that
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MI*«(D\intX) < M}**(bdy X) + M,**(D \ X)

< MI*%(bdy X) + M'**(D\ X),
hence if M}**(bdy X) = 0, then the condition of our theorem is satisfied,
with p = 1.

The condition M [**(E) = 0 is equivalent to §'**(E) < oo, where §'** is
(1 + a)-dimensional Hausdorff measure [5, (2.10)].

19. Before giving some examples, we need a definition. Let B(x, r) denote
the disc {z € C: |z — x| < r}. If E C C and B > 0, then the S-dimensional
upper density of E at the point x € C is defined as
ME(E N B(x,r))

rp !

lim sup
rl0

the lower density is the corresponding lim inf, and in case these two coincide,
we refer to the density.

20. ExaMPLE. We construct a compact set X C C such that X is the closure
of its interior, and [R], = A(X), but [R ], # 4,(X).

Fix B, a < B < 1. We begin with a closed square P, and inside P an arc T’
having positive (I + §)-dimensional lower density at each of its points [7].
We then remove from P a sequence of thin wavy open strips S;, S,
S3, ..., so that the S; “accumulate” only on I' and accumulate at every point
of I', and so that U ;S; has zero (1 + a)-dimensional density at each point of
I'. Then we set X = P\ (U,S)). For any small disc D of radius r about any
point of T, M **(D \int X) will be bounded below by some constant times
ri*e whereas M !**(D \ X) will be o(r'*). So the condition of the theorem
cannot hold for any g > 0. Thus [R], # 4, (X). Since the diameters of the
components of C\ X are bounded away from zero, it follows that [R], =
A(X) (cf. [6, p. 219 (8.3))).

P
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21. ExaMPLE. We construct a set X with empty interior such that the
analytic polynomials ¢ are uniformly dense in C(X), but [R], # lip(a, X).

Choose a sequence of positive numbers /[, such that 2{°/* < 1. Then
>/ < 1 and we may form a Cantor set C of positive length on [0, 1] by
deleting successively (open) intervals of length /,. Let A denote Lebesgue
measure on the line.

LEMMA. [0, 1]\ C has zero a-dimensional density at X almost all points of C.

PrROOF. Let (a, b,) be the interval of length /, in [0, 1]\ C. Then by
Fubini’s Theorem,

1 dA(z)
A o [ ——
fnllz—a ®)= zl"fo Iz - a,

o0
<22(1—a)™' I 15< oo,

n=l1
so that
0 [:
—_—— < ®
n=1 IZ - anl
for A almost all z € [0, 1]. Similarly,
o0 ['1
1 IZ - bnl

for A almost all z € [0, 1]. For z € C the upper a density of [0, 1]\ C atz is

Me([z—=r,z+r]\C) e
lim sup = < lim sup
rl0 r rl0

(where the sum is taken over those n for which [a,, b,] meets [z — r, z + r]).

la la
< lim sup >’ { — + — }

r(!

rl0 |z — a,,[a |z — b,,]a
= 1
< lim sup 2 z L
rl0 |z - a | |z — bn[

(where N, is the first index in 3)
= (
for A almost all z € C. This proves the lemma.
Now set X = C X [0, 1]. Then [?], = C(X) by Mergelyan’s Theorem [6],

since X does not separate the plane. But clearly C\ X has zero (1 + «)-
Aamcitv at 02 almact all mainte Af V en TR 1 =< Vinmfny YY) hyu Corollary 164
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22. ExaMpLE. The term Swiss Cheese is traditionally applied to any com-
pact set X obtained by removing from the closed unit disc an infinite
sequence {D,} of disjoint open discs, with radii {r,} and centres {a,}, such
that Zr, <1 and U ,D, is dense in the unit disc. For any such X, [R], #
C(X)[1], [6], and hence a fortiori [R], = lip(a, X), for0 < a < 1.

Fix 0 < a < 1. A larger class of cheeses is obtained by relaxing the
condition on the radii of the excised discs to =r}** < 0. We call such a
cheese an “a-cheese”. If X is an a-cheese, then [R], 5 lip(a, X). To see this,
note that by Fubini’s Theorem,

0 r1+ﬂ

[+e]
[ S ——mamx) =3 i
X1 |z—a| ™" 1

[s )
<S> rite2q(l - a)7'< .
1

dm(z)

2~ |

Hence

1 |z — a,
For m almost all such z, it follows that
MM (B(z, )\ X)/r'** >0

as r|0. Precisely speaking, the limit is zero for any z for which the series
converges, unless z happens to belong to bdy D, for some n. This is seen by
essentially the same argument as that of the last section.

Thus the necessary condition for rational approximation is violated, and so
[R], # lip(a, X).

23. We close with some remarks about polynomial approximation. Let &
denote the space of analytic polynomials. It is not hard to see that [Rl.x =
[?],x if and only if C\ X is connected. Thus [P], y = A, (X) if and only if
C\ X is connected and there exists a constant u > 0 such that

M"Y (D\X) > uMM*(D\int X)
whenever D is an open disc. Also [?], y = lip(a, X) if and only if C\ X is
connected and there exists a constant p > 0 such that
M1+a (D \X) > url-&-a

whenever D is an open disc and the radius of D is r.
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