RATIONAL APPROXIMATION IN LIPSCHITZ NORMS—I

By A. G. O'FARRELL

St Patrick's College, Maynooth

(Communicated by T. T. West, M.R.I.A.)

[Received, 5 March 1976. Read, 28 February 1977. Published, 30 December 1977.]

ABSTRACT

Let E be a closed subset of the complex plane \mathbb{C} . This paper concerns the closure in Lip (α, E) for $0 < \alpha \le 1$, of the space of rational functions with poles off E. It may be regarded as a continuation of the author's work in [4, 5, 6, 7]. The main result is that the tale of Lip 1 rational approximation is the same as that of C^1 rational approximation. We also give an improvement of a result of Browder, concerning the functions that satisfy the Cauchy-Riemann equations at the points of a compact set.

Let C^1 denote the space of bounded continuous complex-valued functions on \mathbb{C} with bounded continuous first partial derivatives. For $f \in C^1$, let

$$||f||_{C^1} = \sup |f| + \sup |\nabla f|$$

where $\nabla f = (f_x, f_y)$ is the gradient of f, and let

$$\frac{df}{dz} = f_x - if_y$$

$$\frac{df}{d\tilde{z}} = f_x + if_{y^*}$$

Let E be a closed subset of \mathbb{C} , and let $0 < \alpha \le 1$. For $f : E \to \mathbb{C}$, let

$$||f||_{a,E} = \sup_{E} |f| + \inf \{ \kappa > 0 : |f(a) - f(b)| < \kappa |a - b|^{\alpha}, \text{ for all } a, b \in E \}.$$

Let

$$\operatorname{Lip}(\alpha, E) = \{f : ||f||_{\alpha E} < +\infty\},$$

$$\operatorname{Lip}\alpha = \operatorname{Lip}(\alpha, \mathbb{C}).$$

Let $\mathcal{R}(E)$ denote the set of functions $f \in C^1$ such that f agrees with a rational function on some neighbourhood of E. Let E^d denote the derived set, or set of accumulation points, of E.

Theorem 1. Let E be a closed subset of the complex plane, and let f be a function in the class Lip (1, E). Then the following conditions are equivalent:

- (A) f is the limit in Lip (1, E) norm of a sequence of elements of $\mathcal{R}(E)$.
- (B) f has an extension f^* in the class C^1 , and f^* is the limit in C^1 norm of a sequence of elements of $\mathcal{R}(E)$.

PROOF. It is easy to see that (B) implies (A). To see that (A) implies (B), suppose (A) holds, and choose a sequence of functions $f_n \in \mathcal{R}(E)$ such that

$$||f_n - f||_{1,E} \to 0.$$

The complex derivatives df_n/dz form a Cauchy sequence (in the uniform norm on E^d) of continuous functions on E^d , and hence they converge, uniformly on compact subsets of E^d to a continuous function g. Extend g to a continuous function (also denoted g) on E. It is easy to check that, given $\varepsilon > 0$ and C compact, $C \subseteq E$, there exists $\delta > 0$ such that

$$|f(a)-f(b)-g(b)(a-b)|<\varepsilon |a-b|$$

whenever $a, b \in C$, $|a-b| < \delta$. By Whitney's extension theorem [3, p. 225], there exists an extension f^* of f in C^1 , such that $df^*/dz = g$ on E, and $df^*/d\bar{z} = 0$ on E.

Let $\varepsilon > 0$ be given. There exists an integer N such that

$$||f_n - f||_{1,E} < \varepsilon$$

whenever n > N. Fix n > N. Then

$$\left[\frac{df_*}{dz} - \frac{df^*}{dz}\right] < \varepsilon$$

on E^d . Thus

$$\left|\nabla f_{n} - \nabla f^{*}\right| < \varepsilon \tag{1}$$

on E^d , since $df_n/d\bar{z} = df^*/d\bar{z} = 0$ on E^d . By continuity, there exists a closed neighbourhood $U = U_n$ of E^d such that (1) holds on U. Now $E \sim U$ is locally-finite, so we may modify f_n off U, to obtain a function $g_n \in \mathcal{R}(E)$ and a closed neighbourhood V of E such that

$$\|g_n - f^*\|_{1,V} < 2\varepsilon$$

(indeed, g_n may be taken as constant on a neighbourhood of each point of $E \sim U$). By Kirszbraun's theorem [3, p. 201] about extending Lip 1 functions, we may modify g_n off V to obtain a function $h_n \in \mathcal{R}(E)$ such that

$$||h_n - f^*||_1, \mathbb{C} < 4\varepsilon,$$

and hence

$$\|h_n - f^*\|_{C^1} < 8\varepsilon.$$

This completes the proof.

In order for a function in C^1 to be approximable in C^1 norm by functions in $\Re(E)$, it must satisfy the Cauchy-Riemann equation $df/d\bar{z}=0$ at each point of E. I do not believe this condition is sufficient, but I know of no counterexample. For a reasonably wide class of compact sets E the condition is sufficient, as may be seen by using the constructive methods of [5]. Our second theorem shows that this condition implies that the function is approximable by rationals in Lip α for all α less than 1. The proof uses the technique of the Cauchy transform of distributions. We refer the reader to [6] for the basic properties of this operator.

Theorem 2. Let E be a closed subset of \mathbb{C} . Suppose $f \in C^1$ and $df/d\bar{z} = 0$ on E. Then for each α , $0 < \alpha < 1$, the function f belongs to the closure of $\mathcal{R}(E)$ in Lip (α, E) .

PROOF. Let T be a continuous linear functional on Lip α that annihilates $\mathcal{R}(E)$. Then the Cauchy transform T is a measure [6, Lemma 5] supported on E. Hence, $Tf = T(df/d\bar{z}) = 0$. By the separation theorem, f belongs to the closure of $\mathcal{R}(E)$ in Lip α . A fortiori, f belongs to the closure of $\mathcal{R}(E)$ in Lip (α, E) .

Remarks.

- 1. In view of the fact that Lip α convergence implies uniform convergence, Theorem 2 strengthens [1, Corollary (3.2.2)]. Consequently, it permits strengthening the conclusion of [2, (1.5) (iv)] and [9].
- 2. Dales and Davie [2], and Rubel [9] provide conditions on a function $f: E \to \mathbb{C}$ which guarantee the existence of a C^1 extension. (Dales and Davie consider compact perfect sets in the plane, and Rubel considers compact sets in the plane. Both results involve complex derivatives.) For a more comprehensive result of this kind, see [8].

ACKNOWLEDGEMENT

I am grateful to James Wang for a discussion of Theorem 2.

REFERENCES

- [1] Browder, A. 1969 Introduction to function algebras. Benjamin.
- [2] Dales, H. G. and Davie, A. M. 1973 Quasianalytic Banach function algebras. J. funct. Anal. 13, 28-50.
- [3] FEDERER, H. 1969 Geometric Measure Theory. Springer.
- [4] O'FARRELL, A. G. 1975 Lip 1 rational approximation. J. Lond. math. Soc. 11, 159-164.
- [5] O'FARRELL, A. G. 1977 Hausdorff content and rational approximation in fractional Lipschitz norms. Trans. Am. math. Soc. 228, 187-206.
- [6] O'FARRELL, A. G. 1975 Annihilators of rational modules. J. funct. Anal. 19, 373-389.
- [7] O'FARRELL, A. G. 1975 Localness of certain Banach modules. Indiana U. math. J. 24. 1135-1141.
- [8] O'FARRELL, A. G. 1976 Functions with smooth extensions. Proc. R. Ir. Acad. 76A (29), 317-320
- [9] RUBEL, L. A. 1975 An extension of Runge's theorem. Proc. Am. math. Soc. 47, 261-262.

			3
			٠