A CHARACTERISATION OF HARMONIC FUNCTIONS

By A. G. O'FARRELL

St. Patrick's College, Maynooth

(Communicated by T. T. West, M.R.I.A.)

[Received, 20 December 1976. Read, 24 October 1977. Published, 18 October 1978.]

ABSTRACT

It is well-known that harmonic functions are characterised by a mean-value property. We prove that a weaker approximate mean-value property suffices.

Let U be an open set contained in Euclidean space \mathbb{R}^n , and let f be a real-valued continuous function defined on U. For $a \in \mathbb{R}^n$ and r > 0, let

$$B(a, r) = \{x \in \mathbb{R}^n : |x - a| \leq r\},$$

$$\alpha_n = \mathcal{L}^n B(0, 1),$$

$$M(f, a, r) = \frac{1}{\alpha_n r^n} \int_{R(a, r)} f(x) d\mathcal{L}^n(x),$$

where \mathcal{L}^n denotes *n*-dimensional Lebesgue measure. It is well-known that f is harmonic on U if and only if it enjoys the "mean value property":

$$f(a) = M(f, a, r)$$

whenever $B(a, r) \subseteq U$. The object of this paper is to show that an apparently weaker condition suffices to guarantee harmonicity.

Theorem Suppose f is a continuous real-valued function on the open set $U \subseteq \mathbb{R}^n$, and

$$\lim_{r \downarrow 0} \frac{M(f, a, r) - f(a)}{r^2} = 0 \tag{1}$$

for each $a \in U$. Then f is harmonic on U.

It is worth remarking that, in the case n = 1, this result improves upon a theorem of H. A. Schwartz. His result [3, p. 37, Theorem I] is as follows:

Suppose f is a continuous real-valued function on the open interval (c, d), and

$$\lim_{a \downarrow 0} \frac{f(a+r) - 2f(a) + f(a-r)}{r^2} = 0$$
 (2)

for each $a \in (c, d)$. Then f is linear.

It is clear that the Schwartz condition (2) implies our condition (1), so his result is a corollary of ours. Our result lies somewhat deeper, since the proof involves measure theory.

PROOF OF THEOREM. Suppose f satisfies (1) for each $a \in U$. Fix an open disc D with clos $D \subset U$. Then f is bounded on D, hence the least superharmonic majorant g and the greatest subharmonic minorant h of f on D are bounded continuous functions on D. We will prove that g and h are harmonic on D, from which it follows that f is harmonic on D.

Since g is continuous on D, the set

$$E = \{x \in D : f(x) = g(x)\}$$

is relatively-closed in D. On the open set $D \sim E$, g is harmonic, so that

$$\lim_{r \to 0} \frac{M(g, a, r) - g(a)}{r^2} = 0 \tag{3}$$

for each $a \in D \sim E$. On the other hand, if $a \in E$ and $B(a, r) \subseteq D$, then

$$0 \leqslant g(a) - M(g, a, r)$$

= $f(a) - M(g, a, r)$
 $\leqslant f(a) - M(f, a, r),$

so that (3) holds for $a \in E$ also, in view of (1). Thus (3) holds for all $a \in D$.

By a theorem of F. Riesz [2, p. 116; 4, p. 119], g may be written as a sum k + p, where k is a function harmonic on D and p is the *potential* of a finite positive Borel-regular measure μ supported on E, i.e.

$$p(x) = -\int |y - x| d\mu(y), \quad \text{if} \quad n = 1,$$

$$p(x) = -\int \log |y - x| d\mu(y), \quad \text{if} \quad n = 2, \quad \text{and}$$

$$p(x) = \int |y - x|^{2-n} d\mu(y), \quad \text{if} \quad n \ge 3,$$

whenever $x \in D$. Since k has the mean-value property, (3) implies that

$$\lim_{r \downarrow 0} \frac{p(a) - M(p, a, r)}{r^2} = 0 \tag{4}$$

whenever $a \in D$.

At this point, we have to consider separately the cases n = 1, n = 2, and $n \ge 3$. We give the details for the case $n \ge 3$. The other cases are more or less analogous.

If $B(a, 2r) \subseteq D$, we have

$$\alpha_{n} 2^{n} r^{n} \{p(a) - M(p, a, 2r)\}\$$

$$= \int_{B(a, 2r)} \{p(a) - p(x)\} d\mathcal{L}^{n}(x)$$

$$= \int_{B(a, 2r) D} \{|y - a|^{2-n} - |y - x|^{2-n}\} d\mu(y) d\mathcal{L}^{n}(x)$$

$$= \int_{D} \int_{B(a, 2r)} \{|y - a|^{2-n} - |y - x|^{2-n}\} d\mathcal{L}^{n}(x) d\mu(y).$$

Now the function $|y-x|^{2-n}$ is superharmonic in x for each fixed y, so that

$$\int_{B(a, 2r)} \{ |y - a|^{2-n} - |y - x|^{2-n} \} d\mathcal{L}^{n}(x) \ge 0,$$

thus

$$\alpha_{n} 2^{n} r^{n} \{ p(a) - M(p, a, 2r) \}$$

$$\geq \int_{B(a, r)} \int_{B(a, 2r)} \{ |y - a|^{2-n} - |y - x|^{2-n} \} d\mathcal{L}^{n}(x) d\mu(y)$$

$$= \int_{B(a, r)} \left\{ \frac{\alpha_{n} 2^{n} r^{n}}{|y - a|^{n-2}} - \int_{B(a, 2r)} \frac{d\mathcal{L}^{n}(x)}{|y - x|^{n-2}} \right\} d\mu(y).$$

Let

$$A = B(a, 2r) \cap B(y, 2r),$$

$$B = B(a, 2r) \sim B(y, 2r).$$

Then by symmetry,

$$\int_{A} \frac{d\mathcal{L}^{n}(x)}{|y-x|^{n-2}} = \int_{A} \frac{d\mathcal{L}^{n}(x)}{|a-x|^{n-2}}.$$

Also, for $x \in B$ we have

$$|x-a| \leqslant 2r < |x-y|,$$

hence

$$\int_{B} \frac{d\mathcal{L}^{n}(x)}{|y-x|^{n-2}} \leqslant \int_{B} \frac{d\mathcal{L}^{n}(x)}{|a-x|^{n-2}}.$$

Thus, since $B(a, 2r) = A \cup B$, we have

$$\int_{B(a, 2r)} \frac{d\mathcal{L}^{n}(x)}{|y - x|^{n-2}} \leq \int_{B(a, 2r)} \frac{d\mathcal{L}^{n}(x)}{|a - x|^{n-2}}$$
$$= 2n\alpha_{n}r^{2},$$

36

so that

$$p(a) - M(p, a, 2r)$$

$$\geqslant \int_{B(a, r)} \left\{ \frac{1}{|y - a|^{n - 2}} - \frac{n}{2^{n - 1} r^{n - 2}} \right\} d\mu(y)$$

$$> r^{2 - n} \left\{ 1 - \frac{n}{2^{n - 1}} \right\} \mu B(a, r)$$

$$\geqslant \frac{\mu B(a, r)}{4r^{n - 2}}.$$

Hence, by (4), for each $a \in D$ we have

$$\lim_{r\downarrow 0}\frac{\mu B(a,r)}{r^n}=0.$$

The density theorem [1, p. 181, (2.10.19)(1)] now implies that $\mu = 0$, hence g = k is harmonic on D.

The proof that h is harmonic on D is similar. This completes the proof. We remark that the exponent 2 cannot be reduced in condition (1), since

$$\lim_{r\to 0}\frac{M(f, a, r)-f(a)}{r^{\beta}}=0$$

whenever $\beta < 2$ and f is twice continuously differentiable at a.

REFERENCES

Federer, H. 1969 Geometric Measure Theory. Berlin. Springer.
Helms, L. L. 1969 Introduction to Potential Theory. New York. Wiley.
NATANSON, I. P. 1960 Theory of Functions of a Real Variable, Volume II. (Trans. L. Boron).
New York. Ungar.
Wermer, J. 1974 Lecture-Notes on Potential Theory. Berlin. Springer.