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Estimates for capacities,
and approximation in Lipschitz norms

By Anthony G. O Farrell at Maynooth

§ 1. Introduction

(1. 1) This paper is about the qualitative theory of approximation in Lipa norm,
for 0 <o <1, by analytic functions of one complex variable. Our purpose is to isolate,
and where possible resolve, the main problems remaining in this area. The reader should
be familiar with our paper [14]. in which we solved the first basic problem, namely:
for which compact sets X< C 1s it true that every function in lipa which is analytic on
the interior of X can be approximated by rationals in Lip(«, X) norm?

The problems we consider are suggested by the results and problems on LP

approximation [1], [9]. [10]. [11], [16] and uniform approximation [31, [5], [6], [7],
(83, {121, [17], [19], [20].

(1.2) FirsF, what is the.Lipot analogue of Vitushkin’s “individual function theorem”
for uniform rational gpproxnmation (L19], Lemma 1, p. 172, [6], viii. 8. 1, p.214)? That
is, when is a given lipa function approximable by rational functions with poles off a

compact set X?. Thi.s is.knowx.l to be a local question [13] (as indeed are all questions
of Lipa approximation involving the so-called 7-invariant algebras [3]).

The problem is to give a local condition on a function f which is necessary and
sufficient for it to be approximable by rationals. We give the answer in Theorem 1 (§3),
in terms of Hausdorff content and the weak & derivative of £, The work of Davie [3],
(2.1), p. 412 suggests the possibility of finding a local characterization of the functions
in the closure of an arbitrary 7-invariant subalgebra of Lipa, but we have been unable

to do this. We can only do it when the capacity associated with the 7-invariant algebra
is some kind of Hausdorf{f content.

(1. 3) Second, which are the “analytically negligible” sets for Lipa approximation
(cf. [6], p. 234)? They turn out to be the same as the sets of removable singularities
for lipor analytic functions, and are characterized metrically as the sets of lower (1 + «)-

dimensional Hausdorff content zero (cf. Theorem 2, §6). The analogous problem for
uniform approximation is still unsolved.
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(1.4) Let O<a<f<1, and let X be a compact subset of C. When is every
Lip 8 function which is analytic on the interior of X a limit in Lip(x, X) norm of
rational functions with poles off X? The analogous question for uniform approximation
was answered by Mergelyan {8], (11. 3), and in a more concrete way by Melnikov {12],
Theorem 3. The Lipa solution is Theorem 3 (§8).

When is every lipa function which is analytic on the interior of X a limit in
Lipa norm of Lipf functions analytic on the interior of X? We give a sufficient con-
dition in Theorem 4 (§8). The problem remains open. The corresponding problem for
uniform approximation also lacks a satisfactory solution. It has been solved in terms
of capacities [3], (2. 3), p. 414, but the capacities have not been classified in metric or
topological terms.

Two of the estimates obtained on the way to these results (Lemma (7.6) and
Lemma (7. 8)) are of independent interest. They relate the Lipa, Lipf, and uniform
norms of a function analytic off a compact set E, and involve Hausdorff contents of E.

(1.5) Let E be a subset of the boundary of X. When is every lipax function
which is analytic on the interior of X a limit of lipa functions analytic on the imterior
of X, and on a neighbourhood of E? This is related to problem (1. 3) above, and the
techniques used to prove Theorem 2 give a solution, Theorem 5 (§9). The uniform
analogue is [6], (viii. 7. 4), p. 213.

This problem, and those of (1. 4), are special cases of the problem: when do two
T-invariant subalgebras of lipx have the same closure? We gave a necessary condition
in {14], Lemma 2, p. 189. We conjecture that this condition is sufficient [3], (2. 3),
p. 414,

(1. 6) Apart from these approximation problems, there are many related problems.
Among the most interesting we mention the following:

Let T be a continuous linear functional on Lipa with compact support. Give a
condition on the Cauchy transform 7 which is necessary and sufficient for T to an-
nihilate the Lipa functions analytic on an open set U [1]. If 7 is a measure (that is,
continuous with respect to the uniform norm), then a necessary and sufficient con-
dition is that 7 vanish M'** a_e. off U.

Which functions are Cauchy transforms of continuous linear functionals on Lipa
{71, (3.9, p. 522

Is the content M?(E) continuous from the left as a function of f for all open
sets £ [15]7

(1.7) The results we obtain are generally more satisfying than those obtained in
the uniform case, since they are phrased in terms of contents, and are thus more
explicit. In this respect they match the L? results, which are given in terms of classical
capacities. Of course, it is still possible that the various uniform norm capacities may
turn out to be comparable to integral-geometric contents.

§ 2. Notation

(2. 1) A modulus is a positive increasing function w(r), defined for r>0, with
w(0+)=0, such that r/w(r) is also increasing.
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Such a function is subadditive, hence is uniformly continuous and is its own
modulus of continuity.

Let w(r) be a modulus, and let £ be a subset of the complex plane, C. For a
function f: E— C and a number r>0, let w () denote the modulus of continuity,

w(ry=sup{l/()—fMI:|1x =yl =1},

and let

/1€ =sup {w (r)fw(r):r>0}.

(this quantity may be + o0). Let 0 <a <1, and let w(r)=r* Then w(r) is a modulus,
and we define

(FAP S VA e VAP VA P
Lip(®, E) = {/: | fllo,e < 0},
lip(a, E)={feLip(a, E): w (r)/r*—0 as r|0j,
Lipa=Lip(a, C), lipa=lip(a, C).
We shall be concerned with approXimation in | -|, seminorm. We remark that

if |f,—/1,— 0, then there are constants «, such that f,+a, — f uniformly on com-
pacta. Indeed, we may take a,=f(0)—1,(0).

(2.2) For /- C— C" we denote
1
1o =sup {IA1° + - + 14152,
where f=(f1,.--,fa}

Let 2 denote the space of infinitely-differentiable functions ¢:C — C with
. compact support. For ¢ € 9, let D(¢) denote the smallest closed disc containing spt ¢,
and let d(¢)=diamD(¢),

N(@$) =9l +d(P)IVPll, where Vé=(ds, ¢,).

For ¢ € @, the Vitushkin localization operator T, is the linear operator defined by

1 (/) (¢
T @=r0 o0+ L9 ur
for all functions f: € — C and all z e C for which the right-hand side exists. Here .¢*
is two-dimensional Lebesgue measure, and

5¢ = %(be + i¢y)-

If /is locally L?, for any p>2, then T, [ exists everywhere, and is analytic wherever f
is analytic, and off spt¢. Also, f— T,/ is analytic on the interior of the set ¢ 1)

(cf. [6], [7], [19], [20D).

(2.3) Let h(r) be positive and increasing for positive r. For any set EcC, the

Hausdorff content M, (E) is defined as inf 3 h(diamD) where & runs over all count-
De ¥
able coverings of £ by open or closed discs. In case h(r)=r" for some >0, we write

M, (E)= MP(E), the f-dimensional Hausdorff content of E. The lower B-dimensional
Hausdorff content MA(E) is defined as sup M,(E) where h(r) runs over all positive
h

14*



104 O’Farrell, Estimates of capacities
h(r)
b

increasing functions such that 4 (r) £ r*, —0 as r]0.

A dyadic square is a square with side 2™ and corners of the form r;2"+ is;2"
q J i

for integers m, r;, s;,. We can define contents as above, but using open dyadic squares

instead of discs. The contents so defined are comparable to those defined above.
The dyadic contents corresponding to M,, M?, and M¥% are denoted m,, m”, and mt,
respectively.

The properties of Hausdorff contents and dyadic Hausdorff contents are set out

in{2]. [7], [12], [15].

§ 3. Individual function theorem

(3.1) Let X be a compact subset of the plane, and let Z(X) denote the
algebra of all C® functions f such that f coincides with a rational function on some
neighbourhood of X

Vitushkin’s individual function theorem [19], p. 172 states that a function f,
continuous on C, belongs to the uniform closure of #(X) on X if and only if
there exists 7(d) | 0 such that

If f3pd L2 <n(d($)) N(¢) y(D(¢) ~ X)

for all ¢ € 2. Here y is analytic capacity. Melnikov [12], Theorem 1 established that
the analogue of y for the Lipo norm is the content M!'** so the analogue of
Vitushkin’s theorem is as follows.

Theorem 1. Let O <a <1, and let X = C be compact. Let felipa. Then the
following conditions are equivalent.
(1) For each &> 0, there exists g € R(X) such that
If—gl.<e.
(2) For each £>0, there exists g € Z(X) such that
/=gl x <e.
(3)
1§ £3dd 22| S K N@)M**(D($) ~ X) ISl 06
for all € P. Here K, is a certain constant, depending only on a.
(4) There exists n(d) | 0 such that
1§ 3¢dL | Sn(d(@))N@)M' (D)~ X)
forall pe 2.
(3. 2) Obviously, (3) implies (4), and (1) implies (2).

The equivalent of (1) and (2) follows from the fact that there is a continuous
extension map from lip(a, X) to lip « [18], ch. V1.

It remains to prove that (1) implies (3) and that (4) implies (1). First we need
an estimate for the T, operator.
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§ 4. Estimate for T,
4. 1) The following estimate plays a central role in all our results.

Lemma. Suppose w(r) is a modulus such that

4.1 —0 as rlo.

Let dy >0 be given. Then there exixts a constant Ky(w, dy) >0 such that

I To/11” = Ky N(Y I S11°
whenever [ C— C and ¢ € @, with d{P) £d,.

(4.2) In many cases, the constant K, does not depend on d,. This is the case,
in particular, when w(r)=r*0<a <1,

The case w(r)=r" of the lemma was used in [14], and was stated without
proof. We have used weaker forms of the estimate in a number of papers. It goes
back originally to Bers [21]. The feature which is important for our present work
is the explicit form of the dependence of the operator norm of 7, on ¢. There are some
subtle points in the estimate, so we present the key points of the proof. Some of
the ideas are due to Dolzenko [4].

- -’ : (4. 3) Proof of Lemma. Fix x#y, and let r=|x —y|/2.

We may assume that f vanishes at some point of spt ¢, since T41=0, so that
neither side of the desired inequality is altered by the addition of a constant to f.

Let d=d(¢)=d,. Then
; 4.3.1) L7l =w(@) 1

where y is the characteristic function of spt ¢. We have

1 N -V _
(TN~ TN =6 S() =) f() == J {_(#C_;) (g 5 }f (©3(DdL*Q)
3 ‘ 2r R
p <1600 0= ) SO+ Ul IVl [ iD= A B, say.

sptd - '—_}I

Case 1. r>d. Then one of x, y is distant at least r/2 from spt ¢, so we obtain

AZ|dlle ¥l
Sholle o(d) 1 f1°, by(4.3. 1)

<16l 1/1° @@2r), since w1,
4L

‘>‘ 2 . —-’
BES1° w@n) IVl = by £ —2]
$ . n r

where z i1s x or y. The latter integral is estimated by 27d, so
B=8d|IVPL., /11 w(2r).
A+ B=8N(P) I /1° w(@r).
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Case 2. r < d. Since w is a modulus,

2r  w(d) < 2d ‘w(2d)

w{(2r) d ~— wd) d

=2

=3

so we have
A= Pllo 11 0@+ 1 /21l 1@ (X) — (1)
Sdlle H/1° 0@r)+a(d) 1 f1° 1Vl 2r
(by (4. 3. 1) and the mean value theorem)
S2{{ @l +d IVl 1S9 w@r).

Let D, and D, denote the closed discs of radius 7r/4, centred at x and y
respectively. Then D, u D, contains the closed disc D,, of radius 5r/4 centred at the
point w=(x + y)/2. Let E denote the part of spt¢ outside D,,. Then spt¢p = D, u D, U E,
SO we may estimate

dL%()
——= | + =1 +L+1;, say.
slr[t ¢ lg —'Xl |C yl jx b[y i!: ! 2 Y
Row, PEYE-ACR
v < n,
T rop, [{—x|
and similarly, /, £7n. For { € E we have
. I{—wl=5min {{{—x]|,[{-yl},
hence
g 3d
1_2sj (ICZ) <507 j <100n+50nlog<d>

B= {228 +100 10g<*:i~)} reo@)- /17 1Velly,

Consider the function p(r, d), defined on the closed triangle T= {(r,d): 0 £r<d <d,}
by

’r_s

0
@ ro (4
p(/,d)—-! y o) log<r>, r>0.

The hypotheses on w ensure that p(r, d) is continuous, and hence bounded, on 7. Let
K, (w, d) be the supremum of p on 7. Then

B={228+100 K3} d [Vl /17 w(2r),
A+ B<(230+ 100 K3) N(¢) [ £ e(2r).

Thus in both cases,

(To/) () = T ) W= K, N(@) [ SI1? w(lx —y]),
where K, =230 + 100 K;. The lemma is proved.
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§ 5. Proof of theorem 1

(5. 1) (1) = (3). By continuity, it suffices to prove that (3) holds for all fe Z(X).
The left-hand side is the absolute value of (74/)'(»). But T,/ is analytic off D(¢)~ X,
hence by an estimate of Dolzenko [4],

{(To ) D EKNTyf 1 MTHD($) ~ X)
where K, depends only on a. The result now follows from the lemma.

(5.2) (4) = (1). This is a routine application of known technique. In [14] the
Vitushkin-Davie approximation scheme [19], [3] was modified to apply to one case of
Lip « approximation. The modified scheme is not adequate to deal with all possible
questions of Lip o approximation by analytic functions, since it leans on the metric
character of the capacities in the case studied. However, the scheme will work whenever
the capacities are Hausdorff contents. For this reason the scheme in [14], § 15 can
be applied to prove the implication (4) = (1). We omit the details.

§ 6. Analytically negligible sets

(6. 1) A compact set £ < C is said to be analytically negligible if every function f,
continuous on the sphere and analytic on an open set U in the sphere X can be
approximated uniformly on X by functions which are analytic on U and on a
neighbourhood of E [6], p.234. It is conjectured that every compact null-set for
continuous analytic capacity is analytically negligible. This would follow from the
subadditivity of continuous analytic capacity. Our next result is that the analogue of
this conjecture holds for Lip o approximation.

Theorem 2. Let E be a compact subset of C, and let 0 <a<1. The following are
equivalent.

(1) If felipa and is analytic on an open set U, and ¢>0 is given, then there
exists a function g € lip a such that g is analytic on U and on a neighbourhood of E, and

”f_g”a <&.

(2) If felipo and is analytic on X~ E, then [ is constant.
3y MI**(E)=0.
(4) There exists k>0 such that
Y F~EYZkMIT(F)
Jor every closed set F < C.
6. 2) Proof. Obviously (1) = (2).

The implication (2) = (3) is essentially a theorem of DolZenko [4], 7, p. 75. Suppose
M!**(E)>0. Then there exists an increasing function 4(r) such that 4(r) < r1 "2, h(r)/r* t* —0
as r [0, and M,(E)>0. We may assume that A(r)=rw(r) where ® is a modulus.
Furthermore, by [14], Lemma 4 we may assume that w is a modulated function in the
sense of [14], p. 190. This guarantees the hypotheses of Dolzenko’s theorem, hence
there exists a nonconstant function f, analytic off E, such that | f||® < co. This
functions belongs to lip o, since w(r)/r* — 0.
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It is obvious that (3) = (4), since M}** is subadditive.

The meat of the theorem is the implication (4) = (1). In order to tackle this,
we use two capacities. Fix an open set U. For any closed disc D, we say that a
function felip a 1s D-1-admissible if || f{,<1 and f is analytic on U and on 2~ D,
We say that fis D-2-admissible if it is D-1-admissible and is analytic on a neighbourhood
of E. We define

yi(D)Y=sup {|f'(c0)|: is D-j-admissible} (j=1, 2).
By [14], p. 192; Cor. 7, there is a constant K> 0, depending only on «, such that
KDY M (D ~U) s Ks7,(D)

for every closed disc D.

We claim there is another constant Ky > 0 such that
Ks' (D) s Mi**(D~U~E)<Kq7,(D)
for all closed discs D.

Assuming this claim for the moment, both y, and y, are essentially Hausdorff
contents, hence the approximation scheme of [14] applies, and shows that (4) = (1).

To prove the claim, note first that [14], Cor. 7 implies that y,(D) is comparable to
sup {M!**(D~U~N): N is aneighbourhood of E}.
Thus it comes down to showing that there is a constant K; >0 such that
lign MY (F)= K, M**(F)
whenever F, T F. Carleson [2], p. 9 (3. 2) proved that
linm my(F)=m,(F)

for any increasing function 4. This implies that

li’r'n M,(F)zK; M (F)

where K, is a universal constant. The claim follows, by the definition of MI** The
theorem is proved.

[t is worth remarking that the implication (4) = (3) is trivial. Simply choose F= E.

§ 7. Comparisons between norms

(7.1) Let 0 <a<f<1. We turn now to approximation of and by lip § analytic
functions, in Lipa norm. The first step is to estimate the appropriate capacity,
and for this we must see how the Lip f norm of an analytic function coutrols its
Lip @ norm. Our goal is the estimate (7. 8). We break the proof into a series of lemmas.

(7.2) Lemma. Ler w(r) be a modulus. Let [ analytic off a disc D of diameter d,
with f(oc)=0. Then '

1o =12 w(@d) /1.
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Proof. Let f=u+ iv, with u and v real-valued. By the maximum principle u and v
each have zeros onbdy D.Thus, on D,
lul < o(d) ol = w(d) /1,
ol Sw(d) [vf® S w(d) 1 F1°,
NisV2 0@ 111
and the result follows from the maximum principle.
(7.3) Lemma. Let 0 <a <1, and let w(r) be a modulus with
n(r)=sup {w(s)/s*: 0 <s=r} | 0.
Let { be analytic off a disc D of diameter d, with f(c0)=0. Then
I/l 222 n(@) 1/11°-
Proof. Fix x*# vin C.
Case 1. |x —y| Zd. Then
/()= o(x —yD I =n(@d) 119 1x = yI*
Case 2. |x —y|>d. Then ’
)= D=21 1 <2)/2w(d) | /1, by Lemma (7. 2)
<2)/20@) 1112 Ix—yP.
The result follows.

(7.4) Lemma. Let w(r) be a modulus, let h(r)=rw(r), let [ be analytic off a
compact set E and vanish at co. Let z¢ E, and set d=dist (z, E, where E is the
smallest closed disc containing E. Then

21/2 MYE)f1I”
- L,

(7.4.1) @)1 < :
212 M,
(7.4.2) o)< L/_M (Ed)zllfll |

This result is proved in the same fashion as [14], Lemma 12. Just cover E
by squares and use the Cauchy integral theorem.

(7. 5) Lemma. Let h(r) be continuous, increasing and positive for r>0, with h(0)=0.
Let E be any subset of C. Let p be a positive integer. Let

s=h"Y(M(E)).

Let {B,} be a countable covering of E by closed discs of radius s, such that no point
belongs to niore than p of the B,'s. Then there exists a universal constant Kg, such that

3 My(B, 0 E)= Ky p My(E).

We note that # maps R* = {r: r =0} homeomorphically onto im/, and M,(E) € im/
(by the definition of M,(E)), hence h~'(M,(E)) exists. This lemma generalises the
first assertion of {14], Lemma 13, and the same proof works.

Journal fir Mathematik. Band 3117312 - 15
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(7.6) Lemma. Let w(r) be a modulus satisfying (4.1.1), and let h(r)=ro(r).
Let E be a compact subset of the plane with diamE<10. Ler f be analytic off E,
with f(o0)=0. Then

1/ = Kgoo{h™ (M (E)) M1

where Kq>0 depends only on o.

Proof. Cover E by discs {B}} of diameter s =h~'(M,(E)), in such a way that no point
belongs to more than 4. Let B; be the disc concentric with B}, with twice the radius.
Choose functions ¢;e 2 with spt¢; c B;, 0<¢;<1, 3 ¢;=1 on a neighbourhood of
U Bj, and [Vo¢,i,<4/s. Let f;= Td,jf. Then f=3 f;, and f; is analytic off B;
By Lemma (4. 1),

(7.6.1) /31 = Ko /1%,

where K,y depends only on w.
Fix x € C. Divide the integers j into classes G,, (n=0,1,2,...) by the rule: je G,

if and only if m is the greatest nonnegative integer such that dist(z, B;) = ms. There are
at most K,, max {m, 1} integers in the class G,,. We have

WIS S @I+ S T 15

jeGo m=1jeGm

<K, 00 e 2z A2 MBI D) I

m=1 jeGm T ms

,by (7.2)and (7.4.1)

§K12~Hf|l°"w(5)-{1+ PIEEDD

m=1 jeGn MHE)

M,(B; n E) 1
h(s)

S K |Lf1I w(s), by Lemma (7. 5).

}, by (7. 6. 1)

=Kl f1°w(s) {1 2 (cf. [6], (2. 6), p. 201)

i

The lemma is proved.

(7.7) Lemma. Let 0 <o <1. Let w(r) be a modulus satisfying (4. 1. 1), and such that
@) 0, and let h(r)=rw(r). Let

n(ry=sup{w(s)/s*: 0 <s=r}.
Let E and f be as in (7. 6). Then
1N £ Kys-n{h™ {(M(E)))- WS1e.

Proof. Choose s, B, ¢;, f;as in (7. 6). Fix x, y € C. There are two cases to consider.

Case 1. |x—y|=s. Then

LAD)-fONS20f 1 S2K5 () 1S 11, by (7. 6),
S2Kg s a(s) - N9 - ix =yl
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Case 2. |x — y| <s. Classify the integers j into classes H,, (m=0,1, 2, ...) according
to the rule:je H, if and only if m is the greatest nonnegative integer such that

. X+
ms§dlst<x2y,3j>.

Then there are at most K,, max {m,1} integers in H,, and we have

SO OIS T @0+ S S 5@ -]

jeHo m=1 jeH,,
(where z; is some point between x and y)

Kig- MyB; 0 E)- | fl|”-s' " Jx—pf

SKuKign@s) /10 Ix—pP+ 2 X

m=1 jEeH,.,l mzsz
(by (4. 1), (7. 3), and (7. 4. 2))
& M, (B:n E
§K17~'1(-v)-Hflt‘”-IX~yl“'{1+ )IEDS %—)}
m=1 jeH,,

<Kig-n(sy- A9 |x—ypl*, as before.
The lemma follows.

(7. 8) Corollary. Let 0 <a<f<1. Let E be a compact subset of the plane, and
let [ be analytic off E, with f{00)=0. Then
148 H
[/l Kys- METECEY TP g,
where K5 depends only on o and p.

The restriction on the diameter of £ is not needed in this case.

§ 8. Approximating smoother functions

(8. 1) Let B(x, r) denote the closed disc with centre x and radius r.

Theorem 3. Let 0 <a < f <1, and let X be a compact subset of C. Then the following
conditions are equivalent.

(1) Each function fe LipB which is analytic on intX is the limir in Lip(x, X)
norm of a sequence of rational functions with poles off X.

(2) There exists a constant k>0 such that
1 o S
MY D~ X)) 2 kMU (D~int X))’
Jor every closed disc D.

MU (B(x, )y~ X)

1+a

(3)  limsup >0 for M**# almostall x e bdy X.

rlo r
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The equivalence (1) < (3) is analogous to Melnikov’s theorem [12], Theorem 3.
The uniform analogue of the equivalence (1) <> (2) states:

Euach function fe LipfB which is analytic on intX is a uniform limit on X of
rational functions if and only if there exists k > 0 such that

1
y(D~X)ZxM' " H(D~int X)'*F
for every closed disc M, where y is analytic capacity.

This is also true, in view of the density theorem [12], Lemma 4, and Melnikov’s
theorem.

Theorem 4. Let O <a<f <1, and let X be a compact subset of C. Then the
condition
(1) there exists k>0 such that
M #(D ~int X)ﬁ?g KM!**(D~int X)l_i;
for every closed disc D,
implies the condition

(2) each function felip o which is analytic on int X is a limit in lipa norm of
Sfunctions in Lip f which are analytic on int X.

There is an analoguous theorem for approximation by functions in lip f, with M**#
replaced by M} "4,

(8.2) Fix 0<a<fi<1, and a compact set X < C. We shall use three capacities
to prove these theorems. We say a function felipa with [[f},<1, analytic off a
closed-disc D is D-1-admissible (respectively, D-2-admissible, respectively, D-3-admissible)
if /is analytic on a neighbourhood of X (respectively, analytic on int X, respectively,
in Lip # and analytic on int X). We define

y;(D)=sup {|f"(0)|: f is D-j-admissible}
for j=1,2,3 (these y; are not to be confused with those defined in §6). Then, as
we know, 7, (D) is comparable to M* **(D ~ X),and y, (D) is comparable to M: **(D ~ int X).

Lemma. There exists a constant K,q, depending only on x and f3, such that

-

+a

Y3(D)Z KoM #(D ~int X)'*7

for all closed discs D.

Proof. Fix a closed disc D, and let E=D~int X. By Melnikov’s theorem [12],
Theorem 1 there exists a function fe Lip f such that f is analytic off E, |fl;<1,
and f'(0) = K,o M *#(E), where K,, depends only on B. By Lemma (7. 8), the function

-1 1+p T—}%
Kis - M"E) "7 f

is D-3-admissible, and the result follows.
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(8.3) Proof of Theorems 3 and 4. The capacities y, and y, are comparable to
contents, and y; is bounded below by a content, so the approximation scheme of [14]
proves Theorem 4 and the implication (1) = (2) of Theorem 3.

The implication (2) = (3) follows from the density theorem [7], (4.4), p. 121,
which states that for any Borel set E,

M P (B(x,r) N E)
rl+ﬂ

v

lim sup
rlo

1
25
for M'*# allmost all x € E.

It remains to prove the implication (3) = (1). The proof is suggested by the proof
of sufficiency in [12], Theorem 3. First, we need an inequality.

Lemma. Let 0 <y<¢d and let E < C. Then
1 1
M*(E) = M'(E)".
Proof. Let {D,} be a countable covering of £ by discs, with diam D,=d,. Then
3
Zaisxd
since the function  — 1" (1>0) is concave. The lemma follows.

Now assume (3) holds. Let fe Lip § be analytic on the interior of X. Then by
DolZenko’s estimate, Lemma (4. 1), and Lemma (7. 8),
I[fopd L2 <Ky -N(p) M TFH(D(¢)~int X)- |1 /1l

for each ¢ € &. To show that f is approximable by rationals, it suffices, by Theorem 1, -
to prove that

M'“8(D~intX)<e(d) M'**(D~ X)

for all closed discs D, where d =diam D, and ¢(d) | 0 as d | 0. We shall in fact show that
MYE(D~int X)<K,, d*7* M***(D ~ X).

Fix a closed disc D, with diameter d. There are two cases to consider.

Case 1. M9 (D~X)=M"*#(D ~ bdy X). We have
MDD ~int X) S MU E(D ~X)+ MU A(D A bdy X)=2 M 4(D ~ X)

l+a

<2dP T MYUA(D~ XY TP <2dF T MY (D ~ X)),

where we have used Lemma (8. 2).

Case 2. M'*P(D~X)<M'*#(D ~n bdy X). Arguing as in [12], p. 122 we find a
countable family of pairwise-disjoint squares {S,}, with sides r, <2d such that

M (S~ X)Zd* P},
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ST 2K MPYE(D A bdy X)

and such that for every square S,

S orithLo s
Suc S

where r is the side of S. We choose functions f, € Z(X) such that f, is analytic off
Sur Ju(0)=0, fi(o0)=r*? and [f,ll.Sd”"* Then f=3 f, satisfies |f]l,< Ky d"™*

(thisis proved as in [12], p. 119), and we have
MU B(D~int X) L2 MY/ (D nbdy X)S2 K3t Y™

=2 K33 f'(0) £Kps dP 7 M T5(D ~ X)
by Dolzenko’s estimate.

This concludes the proof of Theorem 3.

§ 9. Further results

The following theorem may be proved by the approximation scheme of [14],
using [14], Cor. 7 and Carleson’s theorem as in (6. 2) to identify the capacities.

Theorem 5. Let 0 <a<1. Let X be a compact subset of C, and let E and F be
closed subsets of bdy X. Then the following conditions are equivalent.

(1) Each function felip o which is analytic on int X and on a neighbourhood of E
is a Lip(a, X) limit of functions in lip o which are analytic on int X and on a neigh-
bourhood of F.

(2) There exists a constant k>0 such that
MM (D~F~int X)Zk M1 (D~ E~int X)
for each closed disc D.

There are a number of partial results along these lines which may be obtained
by juggling with Lip 8 conditions and analyticity on various sets. We can also get
one direction of an individual function theorem for Lip a approximation by Lip f§ analytic
functions, by applying Lemma (8. 2).

Finally, a problem. The argument of (8. 3) suggests an “instability” result ([19].
pp.288—290) might hold for the content M'™# Obviously, such a result must
be purely measure-theoretic, and valid in all dimensions. Prove or disprove the
following:

Let E < R" be a Borel set, and let 0 <a <f<oo. Then for M* almost all x,
either

v

) M*(B(x,r) N E)
lim sup
rio r

x
4"

or else
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