[ 173 )
16.

REAL PARTS OF ANALYTIC FUNCTIONS
By A. G. O’FARRELL

St. Patrick’s College, Maynooth

(Communicated by T. T. West, M.R.1.A.)

[Received, 5 SEpTEMBER 1978. Read, 26 June 1979. Published, 30 DecemBer 1979.]

ABSTRACT

We give a sufficient condition on a bijection ¢ : R - Rso that
Re H® = Re H* o ¢,

where H® denotes the space of boundary values of bounded analytic functions in the
upper half-plane. We also treat H* on the disc, and the disc algebra.

1. Introduction

Let H® denote the usual Hardy space on the real line, consisting of boundary
values of bounded analytic functions in the upper half-plane. We give a sufficient
condition on a bijection ¢ : R — R so that Re H® = Re H® o ¢p. We derive a similar
result on the unit circle S. A corollary for the disc algebra improves upon a result of
O’Connell. He proved [5, Theorem 3] that if ¢ : S — S is a C? diffeomorphism, then
Re 4 = Re 4 o ¢. We reduce the smoothness required of ¢ to approximately C*.
We conjecture that the result holds for bi-Lipschitzian ¢, and we give two equivalent
forms of this conjecture. For related results see [1}, [4], [5], [7] and [8].

2. Results
(2.1) For alocally-integrable functionf : R — R, and a closed interval J, let

1
=
denote the mean value of fon I.

Let E < C. A bijection ¢ : E — Eis bi-Lipschitzian if there exists a constantx > 0
such that

™t x—y| < |00() - ()] <x|x-y| @.1.1)
forallx,y e E.

Let ¢ : R — R be bi-Lipschitzian, with inverse function = ¢~1. Then ¢ and ¢
are absolutely continuous, with L® derivatives. Consider the following seminorm:

‘//(t) - ‘/’I[a,t]
Y(t) - Y(a)
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n(¢) = SUPJ dt,
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which may be + c0. We have
(@) <x{ni(@) + n{d)},

V) -V'an

t—-a

where
dt,

() = supf
aeR ) [t-a] <1
Y)Y an

P dt.

n2(¢) = sup [
acR J |t—a|21

The quantity #,(¢) is a kind of mean modulus of continuity of i’. For instance, if y’
is uniformly Dini continuous, then n,(¢) < co. In particular, this holds if /¢ Lip «
for any o > 0. The condition #,(¢) < oo states roughly that ¢ is approximately a
translation near co.

(2.2) Theorem. Let¢ : R — R be bi-Lipschitzian withn(¢) < co: Then
Re H® = Re H® o ¢.

Proor. Without loss of generality we take ¢(0) = 0. Choose x > 0 so that (2.1.1)
holds forall x, ye R. Fix f = u + ivin H®. Let w = H(u o ¢), where H is the Hilbert

transform, that is
1 1 1
wx) = ~ J u($(®) {;_—x - ;} dt,
where the integral is the Cauchy principal value at the singularities of the integrand

(that is # = x and ¢ = 0). We wish to show that w e L®, since this will give u o ¢ +
iwe H®. It suffices to show that w o € L*. Fix a € R. Then by change of variables

1 1 1
w o Y(a) = %JR u(t) {m —m} Vv'(e) dt, 2.2.1)

where the integralis the limitas» | Oand s | 0 of the integrals over
R ~ ¢[y(a) -1, ¥(@) + rD) ~ ¢(-s, 5].
This is not a Cauchy principal value, in general, since the excised intervals are not

symmetrical about the singular points. We need to estimate the difference between
(2.2.1) and the Cauchy principal value integral. An upper bound for this difference is

lim sup {L(a, r) + L(0, r)}
rjo

1 u(ey'(8)
La,r) = nJ‘ | WY@

where J(r) denotes the interval between ¢(y(a) + r)and 2a — ¢(Y(a) - r).

where

dt,
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Clearly,
Larn < H:”w [$w@ + 1 —2ra + $WY@) 1)
2
= - ”Z”w . ‘¢,[lﬂ(a).¢(n)+r] - ¢,[¢/(a)_r,a[/(a)]
2 il
T

Now since v — v(0) is the Hilbert transform of u, we have

1 1 1
v(a) - v(0) = p JIR u(t) { T —t} dt,

where the integral is the Cauchy principal vaiue.

Thus
4 Jullo [ ll ®
[w o Y(a) ~ v(a) + v(0)] < - -{I(a) + 1(0)},
where
AN (t) tia it
[ WOV
“J W vO-va | ¢
<n(¢).
Hence
+ 2n(¢)
e vial <2 uf + {22 g
The result follows.

(2.3) Let H*(D) denote the Hardy space of bounded analytic functions on the open
unit disc, regarded as a space of periodic L® functions on R. Then we obtain the

following analogue.

Theorem. Let ¢ : R — R be a periodic bi-Lipschitzian map with period 2x, such that

71(¢) < oo. Then
Re H*(D) = Re H*(D) - ¢.

ProOF. In this context, the conjugation operator takes a function u € L*(S) to the
function i, given by
0+n

u(y)
o) = 2nL Tl (=0
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where the integral is a Cauchy principal value [9, p. 131].

‘We obtain
o @l = w(d) {Ju e + [i]w}s 2.3.1)

where (@) is a constant depending on #,(¢) and the constant x of (2.1.1). The core
of the estimate goes as in (2.2); the function

2 1
x-0 tan}(x-06)
is well-behaved, so estimating u o ¢ comes down to estimating the principal value
integral

0+n u(x) ,
oD 0@ VW%

where ¢ is the inverse function of ¢. We can get away with #5(¢) < oo instead of
n(¢) < oo, since the integrals are over intervals of bounded length.

(2.4) Corollary. Let ¢ beasin(2.3). Then

Red =Redo g,
where A is the disc algebra.

PrOOF. A is the algebra of continuous functions in H*(D). Let f = u + iv belong to
A. Choose a sequence of continuously-differentiable functions f, € 4, converging
uniformly to f (for instance, take the f, to be polynomials). Let /;, = u, + iv,. Then
u, o ¢ has a continuous harmonic conjugate u, o ¢, since the Hilbert transform ofa
continuously-differentiable function is continnous. By the estimate (2.3.1) the functions
u, o ¢ converge uniformly to u o ¢, hence u o ¢ is continuous, henceu o ¢ € Re 4.

3. Some questions

(3.1) For 1 < p < oo, the Hilbert transform H is bounded on LP(R) [6], hence
Re H? = Re L?. Thus Re H” = Re H o ¢ if and only if ¢ is bi-Lipschitzian.
Incidentally, we use a slightly different H in this context, namely

11 1)
Hf = ol e dr.
This form is appropriate when working with spaces which do not contain the constants.

For 0 < o < 1, the Hilbert transform is bounded on Lip («, R) [6]. Hence, if 4*
denotes the space of Lip « analytic functions on the upper half-plane, then we have
Re 4% = Re A® o ¢ if and only if ¢ is bi-Lipschitzian.

A similar result holds for the spaces of analytic functions with BMO or YMO
boundary values, since BMO and VMO are invariant under the Hilbert transform,
and are composition-invariant only under bi-Lipschitzian functions.
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What makes these results work is not so much that the spaces are invariant under
H, but that the image under H has a reasonable description. We formalise this by the
following definition.

Let B be a Banach space of measurable functions on R. We say that B admits
a metric characterisation, or Be AMC, if the map

BB
Pu {f—»fo ¢
is bicontinuous for every bi-Lipschitzian ¢.

Obviously, L (R) (1 £ p £ o), Lip (¢, R) (0 < & £ 1), BMO and VMO admit
metric characterisations. Also, the space of bounded continuous functions, and the
weighted L® spaces with weights 1 + lxl“ admit metric characterisations. However
the Fourier transform does not preserve AMC. More precisely, if (B, |-|) € AMC, then
the space

B={f:feB},

with the norm [f]| = ||f]|, does not necessarily admit a metric characterisation. For
instance, the Sobolev space W2 of L2 functions f such that /' and f~ also belong to L?

A
does not admit a metric characterisation, whereas W2 is the weighted L? space,
L*(1 + |x|*) [3, Chapter II]. For much the same reason, not all Fourier multipliers
preserve AMC. What if the multiplier is unimodular? In particular, what about the
Hilbert transform?

ProBLEM. Does Be AMCimply HBe AMC?
(3.2) For a bi-Lipschitzian ¢ : R — R, define the associated Calderon-type operator
C,by
1 )
Cof ) (%)== = do(t),
( ¢f)( ) TEJ‘ ¢(t)—¢(x) ¢()

where the integral is a suitable principal value (cf. (2.2)). This is similar in form to an
operator considered in [2]. We have the identity

HCyf = H 4 HY 4 f

for any function f for which either side makes sense. This shows that if Be AMC,
then the transformed space HB admits a metric characterization if and only if the
operator HC, : B — Bis continuous for every bi-Lipschitzian ¢.

O’Connell [5, Theorem 2] proved that ¢ must be absolutely continucus if Re 4 =
Re 4 - ¢. The natural guess for a sharp condition on ¢ for Re H = Re H® ¢ ¢ is
that ¢ be bi-Lipschitzian. In view of the foregoing remarks we ask the following:

PrOBLEM. Are the following equivalent conditions true:
(1) Re H® admits a metric characterisation;
(2) HL® admits a metric characterisation;
(3) HC, : L® — L is continuous for every bi-Lipschitzian ¢ ?
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Added in proof: The answer to both the above problems is no. Details will appear
later.



