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Abstract. Let C(X) denote the space of real-valued continuous functions on a compact Haus-
dorff space X. We obtain a necessary and sufficient condition for the vectorspace sum A; + /1, of two
subalgebras to be dense in C(X). We solve the analogous problem for finitely-gencrated modules
over a subalgebra of C(X). Also, we determine the conditions under which these various spaces
are closed.

In this paper, we consider some questions about approximation by real functions.
The Stone-Weierstrass theorem completed the theory of qualitative uniform approxi-
mation by elements of an algebra of real functions. We study two related structures,
namely modules and finite sums of algebras. The reader will observe that the nature
of the subject is essentially geometric, in contrast to the topological and metric
character [3], [6] of complex polynomial approximation. Even a simple rotation of
a sct in R" can radically alter the closure of certain polynomial spaces.

Let us introduce some notation. If X is a compact HausdorfT space, then C(X)
denotes the space of all continuous, real-valued functions on X. If A is a subset of
C(X), then A denotes the closure of 4 with respect to the uniform norm. |{-[{, on A"
If /1,73, .../, belong to C(X), then P(f,fs, ..,/ ,) denotes the algebra of all
polynomials in f, /5, ..., /, with real coefficients.

Our main result is Proposition 2, which gives a necessary and sufficient condition
for the sum of two subalgebras of C(X) to be dense in C(X).

We are grateful to Robert Green for helpful conversation.

1. Sums of algebras.

(1.1) We begin with a special case. For which functions f and ¢, belonging tc
C(X), is
() P(f)+Pg) = C(X)?
Clearly it is necessary that the map from X to R?, given by F(x) = (/(x), g(x))
be injective. Suppose F is injective. If Y is the image of X under F, then Y is homeo-
morphic to X. A moment’s thought reveals that (1) holds if and only if

(2) P(O+P(3) = C(Y),

4 — Fundamenta Mathematicae CV/3




204 D. E. Marshall and A. G. O’Farrell

where x and y denote the coordinate functions in R?. So our problem is to characterize ,
the compact sets Y in R? for which (2) holds.

To analyze this question, we introduce the concept of a trip in Y. A tripin Y
is a finite ordered subset {a,, v,y of Ywith a;, #a,,, (i=1, vy 1—1), and
either a; = (x;, yy), a4, = (X1, 2), a3 = (X3, ¥2), @5 = (X2, ¥3), ..., 0r @y = (xy, yy),
ay = (x3,¥;), a3y = (X;,¥,), ... A trip with at least two distinct points is called
a round trip if a, = «a,. The relation on Y, defined by setting a~b if ¢ and b belong,
to some trip in Y, is an equivalence relation. The equivalence classes we call orbits.

PROPOSITION 1. Let Y be a compact subset of R* with all orbits closed. Then P(x)
+P(y) is uniformly dense in C(Y) if and only if Y contains no round trip.

Proof. The necessity of the condition is clear. For if Y contains a round trip,
then it contains a round trip with an even number of distinct points, say
{a;, a,, ..., ay,, a;}. The alternating sum :

fa)—f(a)+f(a3)—...—f(ay,)

vanishes for all fin P(x)+P(y). Thus P(x)+P(y) is not dense in C(Y).

Conversely, suppose Y contains no round trip. We will prove P(x)+P(y) is
dense in C(Y) by showing that the only annihilating measure for P(x)+P(y) is
the zero measure. Let M(Y') denote the space of all real, finite, Borel-regular measures
on Y. Let n; and 7, denote the orthogonal projections of ¥ into the coordinate
axes. That is, m,(x,y) = x and m,(x, y) = y, whenever (x, y) belongs to Y.

Suppose, contrary to our assertion, there exist nonzero annihilating measures
on Y for P(x)+ P(y). Let K denote the closed unit ball of the space of annihilating
measures. That is,

K = M(Y) A P)* a POY* o {ps Hlull<1)

Then K is weak-* compact and convex. By the Krein-Milman theorem, there exists
an extreme measure g in K. The support of p must be contained in a single orbit.
To see this, note that a measure v annihilates P(x) if and only if v(z; '(E)) =0
for every Borel subset E of R, by the Stone-Weierstrass theorem. If a Borel set C is
a union of orbits, then 77 ! ¢ 7,(a) is contained in C, whenever a belongs to C. Thus
the restriction p|C of pu to C annihilates P(x). Similarly, x|C annihilates P(y).
Since p is extreme, it must be supported on a single orbit. Call the orbit C.
Fix a point @, in C. Then C may be written as the union of compact sets C,,
where C, = {a,}, C, = a7 o my(C)), C3 = 3 0 7y(C,), Cy = 7y ' o 1,(C3), and
so on. Clearly we have C;=C;,; for each i. Thus there exists a positive integer n,
such that |u|(C,,)>0, where |u| denotes the total variation measure of u. Since g
annihilates P(x), it follows from the Stone-Weierstrass theorem, again, that
w(C,,) = 0. Hence u (C,,) = u_(C,,)>0, where u = p, —pu_ is the Haar decom-
position of u. Choose a Borel subset E, of C,,, such that u_(F,) = 0 and u,{(E;)>0.
Since p annihilates P(y), it follows that p(n; ' o m,(Ey)) = 0, so we may choose
a Borel set E,, such that E,cny o n,(E))cCopuy, £, 0 Eg = B, u,(E) =0,
and u_(E))=u,(Ey). Continuing this process, choose a Borel set E,, such that
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Eycniton(ENeChprr EyxnE; =@, n (E) =0, and p,(E)>p_(E,), and
so on.

We see that the resulting sets, Eq, E,, E;, ..., are pairwise disjoint. For other-
wise, there would exist positive integers k and m, with k<m, and a trip
{by, byt i .-s byt such that b; belongs to E; for i = k, ..., m, and b, belongs to
E, n E{. But then there would exist trips {a,, a,, ..., 4y, b} and

m
( ! f 1
1y Uy dys s Ay bm}
with «; and &} in C;, for i =2, ..., k—1. Thus, the set

f ’ A B!
fa, gy st b b b Gy, @S, Ay

would contain a round trip. This would contradict our assumption on Y.

Since the E; are pairwise disjoint, and |u|(E;) 2 . (Ey)>0 for each i, it follows
that the total variation of y is infinitc. This contradiction establishes the proposition.

(1.2} Now we turn to the general situation. Let X be a compact Hausdorff
space. Let 4, and 4, be any two subalgebras of C(X) that contain the constants.
The problem is to decide when A;+ A4, is dense in C(X).

For i = 1,2, let X, be the quotient space of X obtained by identifying the
points ¢ and b whenever f(a) = /' (b) for each fin A;. Let n; be the natural pro-
jection of X onto X;. We define a 1rip with respect to (4;, A,) as a finite ordered set
fa,, ..., a,). contained in X, such that a; # a;,, for i =1,2,...,n—1, and either
aday) = n ey, malas) = maay), m(ay) = n{as), ..., or my(a.) = my(ay)., n,(as)
= 7,(uy), msluy) = 7s(ay), ... As before, we say that a tiip is a round wrip if n>1
and a, = a,. Notice that X contains a two-point round trip {a,, a,, a,} with respect
to (A4,. 4,) if and only if 4, + A4, fails to separate points on X. The relation, defined
by setting «x b if @ and & belong to some trip with respect to (4, A4,), is an ¢qui-
valence relation on X. We call the equivalence classes the orbits of X with respect
to (A, A,).

PROPOSITION 2. Let X be a compact Hausdorff space. Let A; and 4, be sub-
algebras of C(X) that contain the constants. Suppose all orbits are closed. Then
A+ A, is uniformly dense in C(X) if and only if X contains no round trip with
respect 10 (A, A,).

The proof of Proposition 2 is similar to the proof of Proposition I. The special
case already involves all the essential difficulties.

2. Applications and examples.

(2.1) Here arc some sets Y, contained in R?, for which (2) fails.

(@) 1(0,0),(1,0), (1, 1), (0, D).

(b) {(0,0),(1,0),(1,2),(2,2),(2, 1), (0, D}.

(c) {(0,0),(1,0),(1,2),(3,2).(3,3),(2,3),(2, ). (0, D}

(d) Any set ¥ with positive area, since any such set contains the vertices of some
rectangle with sides parallel to the axes.

4n
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(2.2) Let Y be the union of two parallel line segments in R?, not parallel to
either axis. Then (2) holds, as is easily seen from Proposition 1. On the other hand,
if Y consists of three sufficiently long parallel line segments, then a little geometry
shows that Y contains a four-point or a six-point round trnp with respect to
(P(x), P(y)), hence (2) fails.

PROBLEM 1. Let Y be a compact subset of R* with empty interior. Do there exist
functions f and g in C(Y) such that P(f)+P(g) is dense in C(Y)?

If Y is totally disconnected, then there is an injective function f in C(Y). Thus
P(f) is dense in C(Y). The general situation appears difficult.

(2.3) Let S denote the unit circle, and define

lo(x,y) = xcos0+ysind

whenever 0<0<2n, (x,y)e S. Then for -each positive integer n, the sum

2n

&) ~+ P(ljan)

=t
fails to be dense in C(S). An annihilating measure for the space (3) is provided by
the alternating sum of of point masses: '

krn kn
Z (— 1) (cos—- sin —n—>

(2.4) A necessary and suﬁ‘icz’ent condition that P(ly)+P(l,) be dense in C(S) is
that 60— be an irrational multiple of m.

The necessity follows from (2.3). To see the sufficiency, suppose (0—@)/r is
irrational. Let R(6) e O(2) (the group of isometries of R?, cf.-[2]) denote reflection
in the line

xsinf—ycos0 = 0.

Let G denote the subgroup of O(2) generated by R(0) and R(¢). Then the orbits
of S with respect to (P(l,), P(l,)) are precisely the orbits, in the usual sense, of S under
the action of G. Since (0—¢)/r is irrational, the orbits of G are all dense in S,
and we obtain the result by an ergodicity argument (cf. (2.6) below).

Note that the orbits are not closed, so we cannot apply Proposition 2.

(2.5) Let X< R? be compact, and let x, y and z denote the coordinate functions.
When is the sum P(x, y)+ P(y, z2) + P(z, x) dense in C(X) ? The annihilating measures
for this sum of algebras assign zero measure to each union of lines parallel to any
coordinate axis. So we may imitate the technique of Proposition 1, and answer the
question in terms of suitable round trips. This method does not seem to work for
P(x)+P(y)+ P(2). Notice that if

X = {(0,0,1),(0,1,1),(1,0,0),(2,1,0), (1, 2, 1), (2,2, D},
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then P(x, )+ P(2), P(x,z)+P(y), and P(y, z)+P(x) are all dense in ‘C(X), but
P(x)+P(y)+P(2) is not. o

PROBLEM 2. Let X be a compact Hausdorff space, and let Ay, A,, ..., A, be sub-
algebras of C(X) that centain the constants. Give conditions that are necessary and
sufficient for A,+...+A, to be dense in C(X). .

(2.6) Let S? be the unit sphere in R?, and let u, v and w be three real-valued
finear functions on R>. Suppose the gradients Vu, Vvand Vw are linearly independent,
and that at least two of the angles that the vectors Vux Fv, Fux P, Pwx Vu make
with one another are irrational multiples of n. Then P(u, v)+P(v, w)+P(w, u) is
dense in C(S?).

To prov"e this, suppose y is a measure on S? that annihilates P(u, v)+P(v, w)+
+P(w, u). Let R € O(3) [2]denote reflection in the plane through the origin spanned
by Vu and Vu.’Let S and 7 € O(3) be similarly defined, with (u, v) replaced by (v, w)
and (w, u) respectively. Then for each Borel set EcS?, we have :

@ W(R(E)) = p(S(E)) = w(T(E)) = —p(E) .

Let G denote the subgroup of SO(3) [2] generated by RS and ST, and let H be
the connected component of the identity in the closure of G in SO(3). Then H is
a sub-Lie group of SO(3). Since H # {1}, it equals SO(3) unless it consists of the
rotations about some fixed axis [4]. Since at least two of the angles between
Vu x Vv, Vo x P, and Pw x P are irrational multiples of m, it follows that H contains
all the rotations about two distinct axes, and so H equals all SO(3).

By (4), the measure g is invariant under the action of G, and hence under the
action of SO(3). Thus p is a multiple of the invariant measure on S?, as a homo-
geneous space under the action of SO(3), and hence p is just a multiple of surface
area on S?. But this contradicts (4), unless p = 0.

3. Modules.

(3.1) Let X be a compact Hausdorff space, and let A be a subalgebra of C(X)
that contains the constants. Let X, be the quotient space induced by A4, and let =, be
the natural projection of X onto X,. Suppose B is a subspace of C(X) that is an
A-module, i.e. AB< B. Then, by modifying an argument of de Branges [I, 5}, we
see that the extreme norm 1 annihilating measures for B are supported on the fibres
of m,. We deduce the following: ‘

PROPOSITION 3. B is dense in C(X) if and only if the restriction of B to each
fibre ng'(y) is dense in C(ng'(y)).

" Suppose B is a finitely-generated A-module. That is, B = fid+...+/,4,
where the f; are in C(X). Then B is dense in C(X) if and only if for each y e X,
the matrix

Silxy) o fx)

S s SiXa)

has rank at least m, whenever x,, ..., x,, are distinct points in 73 ().
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For example, let X be a compact subset of R?, and let # be a non-negative integer.
Then P(x)+yP(x)+...+y"P(x) is dense in C(X) if and only if each line parallel to
the y-axis meets X in at most n+1 points. This is interesting because the space

P()+y P(X)+... + )" P(x)

is not usually closed. For instance, if X = {(x, y): 0g€x<]1, and y=0o0ry=x,
then P(x)+yP(x) is dense in C(X), but the continuous function y¥ does not belong

to (P(x)+yP(x).

4. Closed sums.

(4.1) Let X be a compact Hausdorff space. Let 4; and A, be closed subalgebras
of C(X). In some cases, it turns out that 4,44, is a closed subspace of C(X).
For instance, if Y consists of two parallel line segments in R2, one can check that
P(x)+P(y) equals either P(x), P(y), or C(Y). On the other hand, there exist sets
Y<R? such that P(x)+P(y) is dense in C(Y), but P(,\')+Ph(y—)>is not closed. For
example, let Y = {(0,0), (=1, 1), (=1, =, (¢, =1, & D, (=4, 1, (=4, = .
4, —4%),...; = {ag, ay,a:,a;, ...}, say. Let h be the continuous function on Y
defined by setting fi{ay) = 0, h(a,) = (—1)"/n (n = 1,2, ..). Then it is easy to see
that there cannot exist continuous functions f and g on R, such that f(x)+g(y)
= h(x,y) for all (x,y)e Y.

(4.2) We propose to characterize the spaces X, and the closed subalgebras A,
and A, of C(X), for which 4, +4, is closed in C(X).

Let A be a subalgebra of C(X) that contains the constants. Let X, and n, be
the associated quotient space and projection. For f e C(X), let d( f, 4) be the distance
from f to the algebra 4, and for Y= X let var f be the variation of / on the set Y.

Y

That is,
d(f, A) = inf sup|f(x)—g(x)|,

ged xeX

V?rf = sup f()—-f(»).

x,yeY

The following lemma is due to A. Pelczyski [5, p. 50]. We include a proof for
the reader’s convenience.

LemmMa 1. Suppose fe C(X). Then

d(f,A) = % sup var f.
YeXa nyl(y)
Proof. Fix fe C(X). Clearly, d(f, A) is no smaller than the right-hand side.
To prove the opposite inequality, let X be the set of norm 1 measures yu, belonging
to M(X), orthogonal to A and such that | fdu = d(f, A). By the Hahn-Banach
theorem, K is nonempty. Let u be an extreme point of K. Suppose there exist Borel
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sets E and F, contained in X, such that X, = EUF, En F = @, |ul(n; '(E))>0,
and |g| (x5 1(F))>0. Let / be the restriction of u to n4'(E), and v be the restriction
of i to 7y '(F)..Then / and v annihilate 4, and

d(f, A) = [fadv+[fdi

dv X dal
= ||v}| ,[fW“HMH jfﬁ)—”

< IS, A IS, A)
= d(f, A).

di dy

TR

hence ~/|4]] and v/|{v|| belong to K. Since

H‘H( : >+H n( ’ )
= [[Al{ - Vil —— 1,
g 1 vl

4t cannot be extreme. This contradition shows that u is supported on some fibre
7, '(y). Now,

if =d(f, 4,

ffdw = J(f~w)dyu

for all xe R. Hence

| {fdul<} var f.

')
This proves the lemma.

PROPOSITION 4. Let A, and A, be closed subalgebras of C(X) that contain the
constanis. Let (X, ny), (X5, 7)), and (X5, m,,) be the quotient spaces and projections
associated with the algebras A, A,, and A, n A,, respectively. Then A+ A4, is
closed in C(X) if and only if there exists a positive real number ¢ such rhat

sup var f<csup var f
zeXiz2 "1_2](:) yeXz nHy)

Sor all fin A,.
Proof. The linear isomorphism
A, A +4, C(X)
- <
A, n A, A, A,

1s continuous. By the open mapping theorem, there exists ¢>0 such that
d(f, A, 0 A5Y<cd(f, A,) holds for all fin A4, if and only if (4, + A4,)/A, is closed,
and this happens if and only if A, + A4, is closed. The proposition now follows from
Lemma 1.

(4.3) For example, if Y is the closure of the interior of any ellipse in R?, then
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P(x) +P(y) is closed in C(Y). However, if Y is the closure of the region in R? bounded
by the lines 2y = x, y = x, and y = 1, then P(x)+P(y) 1s not closed in C(Y)

(4.4) We can also answer the analogous question for finitely- generated modules
which contain the constants. An elementary application of the open mapping theorem
gives the following lemma.

LemvA 2. Let D be a Banach space. Let By, B,, ..., B, be closed subspaces
of D. Then B = B, +...+B, is closed in D if and only if there exists K< o such that
each b in B has a representation

b=b,+..+b,,

where b;e B, for i =1,2,...,n, and

max [Ib| <KIjbll.
Now suppose 4 is a closed subalgebra of C(X) that contains the constants,
and suppose B is an 4-module of the form: B = A+f; A+...+f, 4, where f; € C(X)
fori =1, ...,n Then B is closed in C(X) if and only if there exists K< oo such that
each b in B has a representation of the form b = ay+f,a,+...+f,a,, where a;€ A,
Jor i =1,.., n, and max lla}}|<K]||b]].

0<i<n

To see this, choose a positive number ¢, so large that f; + ¢ is invertible in C(X)
for i=1,2,....n. Then (f;+c)Ad is closed. Clearly, B = A+(fi+)A+..+
+(f,+c)A. By Lemma 2, B is closed if and only if there exists a constant K< oo,

such that each b in B has the form b = ag+ 3 (fi+c)a;, where
i=1

max {|laoll, I(fi +Oall, ... I(fu+a,ll} <K]lbl| .
Clearly, this occurs if and only if there exists a constant K'< o such that
max [la| <K']|6l] .
0<i<n

The proposition follows.
For example, let Y be a compact set in R? such that every line parallel to the

y-axis nmeets Y in at least n+1 distinct points or not at all. For each x € n,(Y),
let 5(x) denote the supremum of the positive numbers 5 for which there exist n+1
distinct points a, ..., @,+; in 7y '(x) such that |a;,—a;|>n whenever i # j. Then
the module

P(x)+y P(x)+...+)" P(x)
is closed in C(Y) whenever
inf{6(x) e 7 (Y)}>0.
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Added in proof. S. Ya. Havinson (A Chebyshev theorem for approximation of a function

of two variables by sums of the type @(x)--w(¥), Math USSR Izvestia 3 (1969), pp. 617-632,
especially pp. 620-622) constructed an example which shows that Proposition .1 fails without
the assumption of closed orbits. He also gave an example of the phenomenon exhibited in
4.1). ’

{1]
[2]
{3
4
[5]
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R.C. Buck and J. Overdeck were aware of special cases of Proposition 1.
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