Mathematische
Annalen

© by Springer-Verlag 1980

Math. Ann. 246, 225-232 (1980)

Approximation by Polynomials
in Two Complex Variables

Anthony G. O'Farrell! and Kenneth J. Preskenis?

' Department of Mathematics, Maynooth College, Co. Kildare, Ireland
* Department of Mathematics, Framingham State College, Framingham Centre,
MA 01701, USA

1. Introduction

(1.1) This paper is about approximation by analytic polynomials in two complex
variables on certain compact sets in €2 Specifically, we consider graphs X of the
form

X ={(z, f(z))eC?:ze D},

where f(z) is a continuous complex-valued function defined on the closed unit
disc D.

There are substantial results in this area, notably by Mergelyan [5], Wermer
[14-16, Chap. 17], Hormander and Wermer [4], Nirenberg and Wells [6, 7],
Freeman [2], Preskenis [ 10-12], and Range and Siu [13]. The main open problem
is the following: Are the polynomials uniformly dense in C(X) whenever fisa
direction-reversing homeomorphism? For smooth homeomorphisms f, the local
formulation of “direction-reversing” is

|f:A>1fl on D,

where

fz: %(f,\""'lf\) >
f=30L—1f).
The weaker condition f.#0 on D guarantees that the smooth surface X has no

complex tangents (that is that the tangent plane at a point of X is never a complex
line). Wermer [15] proved the following.

(1.2) Theorem. Suppose f is C' on a neighbourhood of D, suppose X s
polynomially-convex, and f.+0 ae. on D. Then the analytic polynomials are
uniformly dense in C(X).

This sparked off two lines of investigation. One line is the search for conditions
for polynomial convexity of X. The other line begins with the observation that the
degree of smoothness of f in Wermer’s result (one) is higher than the degree of
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approximation (zero, that is C° or uniform). If we assume that fe C* and f,+0
everywhere, then what degree of approximation can be achieved? Assuming X to
be polynomially-convex, the functional calculus [3, (I11.4)] shows that we need
only consider approximation by elements of ¢(X), the algebra of all functions
holomorphic on a neighbourhood of X. The culmination of this line is the
following result of Range and Siu [13].

(1.3) Theorem. Let fe CD) and f,=+0 everywhere on D. Then O(X) is dense in
CHX), in C* norm.

The hypothesis on f; cannot be weakened. If f, vanishes at even one point
ae D, then all functions in @(X) satisfy the tangential Cauchy-Riemann equations
at the point (a, f(a)), and all C! limits of such functions will inherit the same
property.

What is the best result obtainable with the hypotheses of Wermer’s theorem
(1.2)? We cannot expect C! approximation. Can we improve on uniform
approximation? We shall prove the following result.

(1.4) Theorem. Suppose feLip(1, D), suppose f,+0 a.e. in D, and suppose
X ={(z, f(2)):2e D}

is polynomially-convex. Then for all o with 0 <a <1, the polynomials are dense in

lip(e, X).

The Lipschitz spaces Lip(l, D) and lip(x, X) are defined as follows. Let (E, g) be
a metric space, and let 0 <a < 1. Then Lip(«, E) is the space of bounded functions
g:E—C such that for some x>0,

lg(x) —g(¥)] £ rolx, ¥)*

for all x, ye E, with the norm sup|g| +least k. The space lip{a, £) consists ot those
functions ge Lip(z, E) such that, given ¢>0, there exists >0 such that

lg(x)~g(¥) S eolx, v)*

whenever x and y satisfy g(x, y)<d. If E is a subspace of a Euclidean space and
0 <o <1, then lip(a, E} is the closure in Lip(a, E) of the C* functions (restricted to
E). Convergence in the Lipa norm implies convergence in the uniform norm. Thus
the conclusion of the theorem improves on that of (1.2).

We have relaxed the hypothesis on f from fe CY(D) to feLip(l, D). This is
natural since Lip(l, D) functions are differentiable a.e.,, with bounded partials
(Rademacher’s theorem [1, p. 216]). There is no point in insisting that f, exist
everywhere, since we only place a restriction (f;+0) on it almost everywhere.

The conclusion cannot be pushed to a=1. If X is smooth, then the closure of
the C* functions in Lip(l, X) is C*(X), and the Lip 1 norm is comparable to the C!
norm on this closure. If f2=0 at one point, then there are C* functions which are
not Lip1 limits of polynomials.

Thus the degree of approximation almost, but not quite, matches the degree of
smoothness of f.

In Sect. 2 we prove Theorem (1.4). The new tool we employ is the Cauchy
transform on the dual of Lipa, which was introduced in [9]. Using this, we get the
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central Lemma (2.2), which shows that several, a priori different, degrees of
approximation are actually equivalent. Given this lemma, the theorem is proved
using techniques of Wermer.

In Sect. 3 we discuss polynomial convexity of X, and explicit approximation
theorems.

2. Proof of Main Theorem

(2.1) Let €[z, w] denote the vectorspace of all polynomials in z and w, with
complex coefficients. If fe Lip(1, D), then the map =+ (z. f(2)) is a bi-Lipschitzian
map of D onto the graph X of /. This induces bi-continuous algebra homomor-
phisms of C(X) onto C(D) and of Lip(x, X) onto Lip(x. D) for 0<x< 1. The map
Lip(a, X)— Lip(a, D) maps lip(z, X) onto lip(s, D). Thus we obtain the following
lemma.

Lemma. (1) C{z, w} is uniformly dense in C(X) if and only if C{z, 7 is uniformly
dense in C(D).

(i) €z, w] is dense in lip(x, X) if and only if €(z. /7] is dense in lip(a, D).

(2.2) Let & denote Lebesque measure on the plane. For 1€p£L oo, let LP(D)
denote the space LP(D, £?2).

Lemma. Let feLlip(l, D), and suppose f.+0 ae. in D. Then the following six
conditions are equivalent.

(1) Clz, f] is dense in lip{a, D) for all o with Q<o <1.

(2) There exists o such that 0 <o <1 and C[z, [ is dense in lip(a, D).

(3) €z, f1] is uniformly dense in C(D).

(4) Clz, [] is weak-star dense in L*(D).

(5) €z, f]is dense in LD for all p with 2<p < .

(6) There exists p such that 2<p< 2 and Clz, [ is dense in [7(D).

Proof. Obviously (1)=>(2). Lipx convergence implies uniform convergence. Hence
(2)==(3).

Uniform convergence implies weak-star convergence, and C(D) is weak-star
dense in L*(D), hence (3)=(4).

Suppose (4) holds. Let c1:~£--i». Then the dual of [AD) is L[YD). Since

FLHD)< oo, we have [4D)c LYD). By (4), there are no nonzero annihilators of
€[z, f]in LY(D), and hence, a fortiori, none in L9(D). By the separation theorem, (5)
holds. Thus (4)=(5).

Obviously (5)=(6).

To complete the proof, it suffices to show that (6)=-(2) and (5)={1). Both these
assertions follow from the next lemma.

(2.3) Lemma. Let 2<p <, and let

-2
0<1<PM7.
[)
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Let felip(l,D), and suppose f;#0 a.e. in D. Suppose C[z, f] is dense in LP(D).
Then C[z, [ is dense in lip(«, D).

Proof. Let TeLip(x, D)* be an annihilator of €[z, /. Consider the dlstrlbutlon
the Cauchy transform [9, §3] of T. Since T annihilates C[z], it follows that T is
supported on D. By [9, p. 388], T may be represented by integration against a
function in L4(D), where

since

1<<2
T~Tya

[Note the misprint on p. 388, line 16. Instead of 2(1 +«) it should read 2/(1 +«), as
on line 12.]
As in [9], we denote this L? function by T(z). For ge C* we have

Ty= [g.TdZ?. (1)
D

Fix geLip(l, D). Then gelip(x, D). The space C* is norm-dense in lip(, D), and
weak-star dense in Lip(l, D), hence we can choose a sequence g,e C” such that
g,—g in the norm of Lip(«, D) and g,~¢ weak-star in Lip(1, D). Hence g,_—g:
weak-star in L>(D). Thus

Tg=1im Ty,

=lim|g, Td¥?
n D -

= [g:Tds?,
D

since Te L4D)C L' (D). In other words, (1) holds for all ge Lip(1, D).
Thus, for all nonnegative integers r and s, we have

0=T( )
=(s+ 1)§szSj;Tdy2,

hence the function f: Te Li(D) annihilates €[z, []. Since LP(Dy* = L4(D), this forces
A T=0a.e. in D, hence T=0 a.e. in D, hence T=0 as a distribution. This implies
that T annihilates lip(e, D) [9, p. 376].

By the separation theorem, €[z, f] is dense in lip(a, D).

(2.4) Proof of (1.4). By Lemma (2.2), it suffices to prove that €[z, f7 1s uniformly
dense in C(D). Wermer [15] proved this under the stronger assumptions fe CYD).
and f,#0 everywhere in D. He himself remarked (p. 8) that his proof only requires
f.#+0a.c. Butitis also true that his proof works for feLlip(1, D), instead of C*(D).
Indeed, his argument establishes the following fact, under the hypotheses of (1.4)
(cf. [15 Lemma 4, p. 9]):
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Let p be an annihilating measure on D for C{z, f].
. . cd
If (1) f is differentiable at a, (2) Sf(a)=%0, and (3) ‘ ﬂ

lz—al
transform [ vanishes at a. .
Since conditions (1)~3) hold almost everywhere in D, it follows that =0 a.e.
in D whenever y annihilates €[z, /7. Since 1=0 off D for any such g, it follows that
the only annihilating measure is the zero measure. The result follows.

< 00, then the Cauchy

3. Polynomial Convexity

(3.1) Fix feLip(l, D), and let X ={(z, f(2)): ze D). There are several known sets of
sufficient conditions for X to be polynomially-convex. The main ones are as

follows.
(1) (Mergelyan [10, Theorem (2.1)]) f is real-valued, and each contour f~*(f(a))
has no interior and has connected complement.

(2) (Wermer [14]) f=z+ R, where Re C{(D) and
IR(a)— R(b)| <|a—b|

for all asb in D.

(3) (Preskenis [10. (1.9)]) fe C'(D), f. 0 cverywhere in D, and for all ae D there
exists ¢, belonging to the uniform closure of €[z, f] on D, such that #2¢; '(0)=0
and

Re(z—a) () 20

on D.

(4) (Preskenis [12]) Re /22| [ almost everywhere, and each contour f~1(f(a)) is
countable.

(5) (Preskenis [12]) f=Z*¢(|z]™*), where ¢pe C1[0, 1], k is a positive integer, and
1> 1f) on D~ {0},

Adding (if necessary) the condition f.#0 almost everywhere to any of these
sets of conditions, we get an explicit approximation theorem.,

In (3.2), we show that the second condition in (4) can be dropped.

In (3.4), we give a new condition for polynomial convexity, related to (5).

(3.2) Theorem. Let felip(l,D). and suppose Ref,=|f)| a.e. in D. Then
X={(z, f(2)):ze D} is polynomially-convex.

Proof. We claim that

(1) Re (z—a)(f(z)—f(a))=0 for all z,aeD.

Fix a. It suffices, by continuity, to prove (1) for a dense set of ze D. For almost
all ze D, we have

(2) Re f;z|/.| almost everywhere (with respect to length) on the straight line
from a to z. Let ze D be such that (2) holds. The straight line y from « to z is
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parametrised by
(=a+(z—a)t, O=t=<l.
(z—a)(f(2)—/f(a))
=(z—a)[df

=(z—a) [ {/,()z—a)+ /() Z-a)}dt

= [{lz—al* (O +(z—a)* £.())} dr.
0

The integrand has non-negative real part for almost all ¢, hence (1) holds. The
claim follows.
Next, suppose (a,b)e €? belongs to the polynomial hult of X. Then

pla,b)| = sgp ipl

for every polynomial p(é, w). Taking p(z, w)=z, we see that |a|<1. Thus hull X is
contained in X x €.
There are two cases to consider.

Case [. |a]=1.

In this case, the polynomial 1/2(az + 1) (restricted to hull X) peaks on E={a} x C.
This forces

Enhull X =hull (EnX)
={(a, [(a))}.
Thus b=/(a), and (a, bleX.
Case 2. |la|<1.

Suppose b f(a).
The function (z—a)(f(z)—f(a)) maps X to the right half-plane. In view of the
equation

(z=a)(f(2)=b)=(z—a)(f(2) = [ (@) +(z—a)(f(a)—b),

we see that the left-hand side takes some values in the left half-plane, for ze D,
because the second term dominates the first for z near a. Choose ce D such that

Re(c—a)(f(c)—b)<0,
and define

hz,w)=(c—2)(f(c)—w).
Then

Re h(a,b) <0 = Reh(z,w)

for all (z, w)e X, hence

sup exp { — h}| <lexp{—h(a, b)jl,
X
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hence (a, h)ghullX. This contradiction shows that b= f(a). so that {u.h)eX.
Thus, 1n each case, (a,b)eX. Hence hull X =X, and we are done.

(3.3) Corollary. Let feLip(l, D), and suppose f.-%0 a.e. and Re [.Z|f.| a.e. Then
Clzow] is dense in lip(a, X).

Proof. Combine (1.4) and (3.2).

We remark that the hypotheses could also be stated: Re f, > |f.| a.c. and the set of

critical points of f has area zero.

(3.4) Theorem. Let g be continuous on D and analytic on the interior of D. Let
la.b]=|g|*(D). Let ¢:[a,b]—C be continuous. Let [=goUyl?). Suppouse tp1) is
one-to-one. Then €[z, [] is dense in C(D), and hence X is polynomially-convex.

Proof. The algebra €[z, ] contains lg|*¢(|g|?). The function r¢(r) maps [0, 1]
homeomorphically onto an arc /. By Lavrentiev’s theorem [10.(2.2)]. the
polynomials are uniformly dense in C(/7). Thus |g| is a uniform limit on D of
polynomials in |g|* ¢(lgl*). Hence clos €= /] is a C[|g|]-module. By [¥. p. 23471t
suffices to prove that €[z, (] is dense in C(E), for each contour £ = |

lgi= ] of lyl.

Fix zeim|g|.
If ¢(2?)=+0, then on E

Clz/1=C[zgp(=*)]=C[z.4],

and this i1s dense in C(E) by {10, Corollary {2.5)].

If ¢(2?)=0, then C[z,/]=C[z] on E. Since 0¢(0)==¢(%°). we have % =0,
hence E=g~'(0). Thus E is the union of a discrete subset of int D and a closed
subset of the unit circle having length zero. Hence, E has no interior and connected
complement, and by Lavrentiev’s theorem, €[] is uniformly dense in C(E).

The proof is complete.

{3.3) Combining the method of (3.4) with results from [8]. we can prove the
following related result.

Theorem. If the hypotheses of Theorem (3.4) hold, and ¢ is conformal on D, then the
vectorspace sum

Cl= 191”1+ Clgl%, /]

is uniformly dense in C(D).

References

- Federer, H.: Geometric measure theory. Berlin, Heidelberg, New York : Springer 1969

- Freeman, M.: The uniform algebra gencrated by z and « smooth even function. Math, Ann. 196,
269-274 (1972)

- Gamelin. T.W.: Uniform algebras. I'nglewood Chiffs: Prentice-Hall 1969

- Hormander. L., Wermer. J.: Uniform approximation on compact sets in 7. Math. Scand. 23, 5-21
(1968)

3. Mergelyan, S.N.: Uniform approximations to functions of i complex variable. Amer. Math. Soc.
Transh 1. 294-391 (1962)




14.
15.
16.

Received June 5, 1979

. Nirenberg, R., Wells, R.O., Jr.: Holomorphic approximation on real submanifolds of a complex
. Nierenberg, R., Wells, R.O., Jr.: Approximation theorems on differentiable submanifolds of a
. O'Farrell, A.G.: A generalised Walsh-Lebesgue theorem. Proceedings Roy. Soc. Edinburgh 73A,
. O’Farrell, A.G.: Annihilators of rational modules. J. Functional Analysis 19, 373-389 (1975)

. Preskenis, K.I.: Approximation on discs. Trans. Amer. Math. Soc. 171, 445-467 (1972)

. Preskenis, K.J.: Another view of the Weierstrass theorem. Proc. Amer. Math. Soc. 54, 109-113

. Preskenis, K.J.: Approximation by polynomials in z and another function. Proc. Amer. Math. Soc.

. Range, R.M.. Siu, Y.-T.: C* approximation by holomorphic functions and &-closed forms on C*

A. G. O’Farrell and K. J. Preskenis

manifold. Bull. Amer. Math. Soc. 73, 378-381 (1967)
complex manifold. Trans. Amer. Math. Soc. 142, 15-35 (1969)

231-234 (1974/75)

(1976)
68, 69-74 (1978)

submanifolds of a complex manifolds. Math. Ann. 210, 105-122 (1974)
Wermer, J.: Approximation on a disc. Math. Ann. 155, 331-333 (1964)
Wermer, J.: Polynomially-convex discs. Math. Ann. 158, 6-10 (1963)
Wermer, J.: Banach algebras and several complex variables. Markham 1971



