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ABSTRACT

Let E be a closed subset of R%. Let D'(E) denote the closure in Lip (1, E) of the
space of global C* functions. We determine the structure of the space of bounded
point derivations on the real Banach algebra D'(E). We improve upon our constructive
version of Whitney’s extension theorem. We characterise those sets E such that all
functions in D!(E) have C* extensions. We give other applications of derivations, and
some examples.

Summary

Let E be a closed subset of a Euclidean space R%. We denote by C!(E) the algebra
of restrictions to E of global C! functions. We denote by D'(E) the closure of C'(E)
in Lip (1, E). (The notation D*(E) was used in [5, 6, 7] for the corresponding space of
complex-valued functions.) We study the sheaves J(C', E) and J(D', E) of bounded
point derivations on C'(E) and D'(E) respectively. We describe (2.7) J(D*, E) in
terms of a sheaf Tan E which has a geometric definition. We prove (3.2) a stronger,
more elementary version of the extension theorem of [8], and deduce (3.3) a description
of J(C*, E) in terms of Tan E. Qur main result (4.1) is that D*(E) = C'(E)if and only
if they have the same bounded point derivations and the norms of the derivations on
the two spaces are comparable. Section 5 contains some examples, and Section 6
contains another application of derivations.

We assume familiarity with [8], and with Sherbert’s results [9] concerning deriva-
tions on Lip 1 spaces.

1. Definitions and preliminaries
Let E be a fixed closed subset of R?. For functionsf : E — R we define

”f”o,E = sup |f|,
E

/)16 =inf{x > 0:|f(@-f(®)] <x|a-b|, foralla, beE},
1A e =17 loe+ I/ ]'1e
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Let

Lip(1, E) = {feRE: | f|li,e < oo}.
Then Lip (1, E) becomes a semi-simple commutative (real) Banach algebra with
identity [1, 4] when endowed with pointwise addition and multiplication and the
norm |-||;,z. Let C* denote the space of bounded continuous real-valued functions
on R? with bounded continuous first partial derivatives. The algebra C* becomes a
Banach algebra when endowed with the norm

d I g o 2 | 1/2
1l =17 Now? + < Z 1 5 IPog? 12
LJ =1 j _
We denote the gradient of f by
of of
Vf=<5_x1""’6_xd>'
We denote the usual inner product on R? by ¢, >, so that the directional derivative
of fat the point @ € R?in the direction of the unit vector v € Réis {u, V f(a)>.

Let C'(E) denote the space of real-valued functions f on E such that there exists
f*e C!withf* = fon E. Then C'(F) becomes a Banach algebra when endowed with

the quotient norm

I lere = inf {| f*|c: 2/ * e C /% = fon E}.

Lemma 1.1. For each closed set E < R we have CY(E) < Lip (1, E), and the inclusion
map is a contraction.

ProoF. Let fe C!(E) and let € > 0 be given. Then f has an extension f* € C' such
that

1 *¥le: < A+ @] fllesn

Leta, b € E, and let I' denote the straight line from ato 4. Then
| /() - f (@] = | f*b) - *(a)]
= |J.r dx, V f*(x)]|

<|b-a|sup |V ¥
Thus,
1A 0e <] S o,z + sup [VF¥|
<Hf* e
<+ & [ fMes
Since this holds for alle > 0, we conclude that

I le <]/ escer

The result follows.

Let D'(E) denote the closure of C*(E)in Lip (1; E). Then DY(E) is a sub-Banach
algebra of Lip (1, E). For nice sets E, D*(E) coincides with C(E).

i
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We note that the global C* functions are dense in C', in the C* norm, and hence,
by (1.1), D'(E) may also be described as the closure in Lip (1, E) of the space of
(restrictions of) global C* functions. For this reason, D!(E) ® C is the natural context
in which to study Lip 1 rational approximation. This is why we first introduced
this space[5, 6, 71. :

For the remainder of this section, let F(*) denote one of the functors C!(:), D!(+),
Lip (1, ). Thus F(-) is a contravariant functor from the category of closed subsets of
R? (with inclusions as morphisms) to the category of commutative Banach algebras
(with bounded algebra homomorphisms).

Fix E, and write F = F(E)for brevity. Let X(F) denote the spectrum of F(the space
of algebra homomorphisms from F onto R, with the relative weak-star topology from
F*, the dual of F). Consider the map ¢, : E — Z(F), given by ¢ {a) f = f(a) for all
fe€ Fand all g € E. Since F separates points on E, the function ¢, is one-to-one. Since
the functions f'e F are continuous on E, and Z(F) has the relative weak-star topology,
it follows that ¢ - is continuous. The following fact is well-known [9, (2.1)].

Lemma 1.2. ¢ (E)isweak-star densein Z(F).

In case E is compact, it follows that ¢ z(£) equals Z(F), and ¢ is a homeomor-
phism, so that we may identify £ with Z(C'(E)), Z(D*(E), and ¥ (Lip (1, E)). In case
E is unbounded, X (F) ~ ¢ (E) is non-empty and in fact is large and horrible.
Fortunately, as will appear, this fringe of the spectrum does not concern us.

A bounded point derivation on F at a homomorphism © € Z(F) is an element
d € F*such that

d(fg) = ©(f) dg + ©(g) df

whenever f, g € F. There are nonzero bounded point derivations at all accumulation
points of X(F), but we only consider homomorphisms © € ¢ (E). If © = ¢ (a), we
call da derivation on Fat the point a.

Let a € E. We denote the space of all bounded point derivations on F(E) at a by
J(F, E, a). It is easy to check that J(F, E, a) is a weak-star closed linear subspace of
F*. The following lemma rests on the fact that C* < F.

Lemma 1.3. Let ac E, let fe F(E), and suppose f = 0 on a neighbourhood of a.
Thendf = Ofor everyd e J(F, E, a).

PrOOF. Supposef = 0 ona neighbourhood U of a. Choose ¢ € C* such that ¢(a) = 1
and¢ = Ooff U.Then¢p € Fand ¢ - f = 0, so

0=dl¢f) =¢@df + f@dp =df
forevery d € J(F, E, a), as required.

We set
J(F,E)={(a,d):ae E,dec J(F, E, a)},

and we endow J(F, E) with the relative weak-star topology from R? x F*. We may
regard J(F, E)as a sheaf of vectorspaces over £. If E, < E,, then

F(E,) < F(E,)
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(that is, f | E, € F(E,) whenever f € F(E,)). Hence for each a e E, there is a natural
injection
J(F’ El: a) = J(Fs E29 a)-

Lemma 1.4. Supposeac E, < E,, where E, and E, are closed subsets of R®. Suppose
there is a neighbourhood U of a in R? such that E; n U = E, n U. Then the natural
map J(F, E,, a) - J(F, E,, a) is surjective.

PrOOF. Suppose d € J(F, E,, a). Choose ¢ € C! such that ¢ = 0 off U and ¢ = 1
on a neighbourhood ¥ of a. Then for f'€ F(E,) we have ¢ - fe F(E,), where ¢f = O on
E, ~ U. (Check this for each F.)

Define d,f = d(¢f) for all fe F(E,). We claim that d, e J(F, E{, a), and that

To see this fix fand g belonging to F(E,). Then ¢fg € F(E,) hence

dy(fz) = d(¢fg) = d(¢fpg)  (by Lemma 1.3} =
f (@) d(¢g) + g@) d(¢f) = f(@) dig + g(@ d,f.
Thusd, € J(F, E,, a).

Moreover if fe F(E,),thend, f = d(¢f) = df,by Lemma 1.3.

The above proof also shows that the map J(F, E,, a) = J(F, E,, a), which is
obviously a contraction, is a bi-continuous map of Banach spaces. (This fact also
follows from the open mapping theorem). In case F = C* or Lip (1, *), one can show
(under the hypotheses of (1.4)) that this map is an isometry. In case F = D!, itis not
clear to me whether or not the map is necessarily an isometry.

Corollary 1.5. Let E, and E, be closed subsets of R®. Let a€ E, n E,, and suppose
there is a neighbourhood U of a in R* such that E, n U = E, n U. Then there is a
natural norm-bicontinuous linear isomorphism from J(F, E,, a) onto J(F, E,, a).

Proor. Apply(l.4)totheinclusions Ey " E, < E;and E, N E, < E,.

In view of Corollary 1.5, all problems concerning J(F, E) are local in character.

ReMArRkK 1. The occurrence of an extraneous fringe on the spectrum of F can be
avoided altogether by removing the word “bounded” from the definitions of C* and
Lip (1, E), and working with the resuiting Frechet algebras instead of Banach algebras,
There is little to choose between the two approaches. On the whole we retain more
information by working with norms.

REMARK 2. The functor F has the following “localness property”’: Let E be a
compact subset of RY, and let f : E — R. Suppose that each point a € E has a closed
neighbourhood U in E such that f | U € F(U). Thenf e F(E).

This result is not hard to prove. The word “compact™ cannot be replaced by
“closed”, as simple examples show,
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2. Spaces of derivations

The purpose of this section is to describe the structure of J(D!, E, a). As a
preliminary step, we describe J(C?, E, a).

First consider C' = C!'(R%). Fix ae R’ The functions ge C! such that g is
affine on a neighbourhood of the point a are dense in C!. Hence, each derivation
de J(C, R%, a) is determined by its action on the functions affine near a. By (1.3), dis
determined by its action on the globally-affine functions. Thus there exists u € R?
such that df = <{u, Vf(a)) whenever fe C'. The map J(C*, R%, a) —» R? given by
d — u is linear, one-to-one, onto, and continuous (recall that J(C', R? a4) has the
relative weak-star topology from C'*), and hence is a2 homeomorphism. Thus the
sheaf J(C', R?) is homeomorphic to the product sheaf R? x R®. A cross section of
J(C*, R%) on an open set U = R? may be thought of as a first-order partial differential
operator of the form

4 ]

Z g{x) —
Z g4(x) 3%,
where the g ;(x) are continuous real-valued functions on U.

Since J(C', R?, 4) is a finite-dimensional vector space, it has a unique norm, up to
bounded equivalence. Hence the C** norm of the derivation <u, V - (4)) is boundedly

equivalent to ]u] In fact, much more is true. By considering a suitable sequence of C!
functions one can show that

I<u, V- @] er = |u]
whenever a € R?and u e R?.

Now fix a closed set £ = R? and a point a € E. Each bounded point derivation
on C'(E) at the point a induces a unique bounded point derivation on C* at a. Thus, if
d e J(C', E, a), then there exists a unique u € R® such that df = {u, Vf*(a)> whenever
/e CE),f* e C',and f = f*| E. Obviously the map d — u is one-to-one. In the other
direction, if u € RY, and <u, Vfi*(@)) = <{u,Vf,;*(d)> whenever f,*, f,* € C' and
fi* = f,* on E, then it follows that

[<t, 0 *@)] <4 | £*]cseys
hence the formula df = {u, Vf*(@)> (f* | E = f) defines a bounded point derivation
on C!(E)ata. Thus, J(C!, E, a) consists precisely of those functionals
fo><uVfHa@>  (f*eCLf*|E=))
which are well-defined on C1(E).

We denote the value at the function f'e C'(E) of the functional corresponding to u
by D, f(a). Thus D,f*(a) = <u, Vf*(a))> wheneverf* e C'.

The vectorspace J(C*, E, a) has dimension between 0 and d. All integral values
from O to d may occur. For instance, if E is an m-dimensional smooth submanifold
of R4, then dim J(C!, E, @) = mforeachae E.
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The norm of a derivation D, (a) e J(C', E, a) considered as an element of
CY(E)*, is exactly [u|. To see this, note first that the inequality

(DS @] <[ | f]lcscore

is obvious. Conversely, given¢ > 0, there exists f € C! such that
<, V@) = (|u]-8) | e
D.f@| = (4| - | /| ez

”Du ) (a)"a(}:). = lu!

The sheaf J(C!, E) is homeomorphic to a closed subsheaf of the product sheaf
E x R” Thesets

hence

Thus

E; = {ae E :dim J(C', E, a) >j}

are closed subsets of £. For more information on the structure of the sets E; consult
[3, (3.3)] (where the approach is quite different).

Now consider D*(E). Each bounded point derivation & on D'(E) at a point a e E
restricts to a bounded point derivation D, - (a) on C'(E), since the inclusion map
CY(E) » DY(E) is a continuous algebra homomorphism (Lemma 1.1). Moreover,
D, - (a) determines d uniquely, since C!(E) is dense in D(E). We denote df by d,f(a)
for f € D'(E). Thus

d.f(a) = D f(a) = <u, Vf(a)>
forall fe CL.

It is tempting to identify J(D', E, @) with the space of those u € R? such that
D, (a) extends continuously from C!(E) to D!(E), and in this way to identify
J(D', E) with a subset of E x R?. This procedure is fraught with peril, however,
because in general J(D!, E) is not homeomorphic with its image. This problem will
become clearer as we go along.

Since the map C'(E) —» D'(E) is a contraction, it follows that |u| < [|d, - (@] p,c&).
It may happen, however, (cf. Section 5) that ||d, * (a)| is much larger than |u|. By
the same token, the sets

E';={aeE :dimJ(D', E, a) >j}

need not be closed, in general, (unlessd = 1 orj = 1).

The space of bounded point derivations on Lip (1, E) is treated in Sherbert’s
paper [9, especially §9, pp 264-271]. Sherbert provides three different characterizations
of the space J(Lip (1, ), E, @), and other information. Most of his results have
analogues for the regular subalgebra D'(E). There are substantial simplifications,
mainly due to the fact that J(D!, E, @) is finite-dimensional (the dimension of
J (Lip (1, ), E, a) is 2° whenever a is an accumulation point of E). For our purposes,
we require the analogue of one of Sherbert’s characterisations (cf. Lemma 2.5). We
propose to obtain it as a corollary of Sherbert’s result. In order to do this, we first
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establish that every bounded point derivation on D'(E) extends to a bounded point
derivation on Lip (1, E). This in turn reduces to a couple of technical lemmas. The
most important asserts that a certain sum of subalgebras of Lip (1, E) is closed.

Fixae E.Let
M = {felip(l, E) : f(a) = 0},
J={feM:f=0on a neighbourhood of a},

M = M DYE),
J = Jn DYE).

Then M and J are ideals in Lip (1, £) whereas M and J are ideals in D*(E). For any
space 7 < Lip (1, E), we use the notation I? for the space of finite sums of products of

pairs of elements of 7. Thus M? and M? areidealsin Lip (1, E) and D(E), respectively.
By a standard result on Banach algebras [9, (8.4), p. 262], J(D!, E, a) consists precisely

of those functionals in D*(£)* which annihilate the constants and M?2. Symbolically, we

write J(D', E, a) = (Rl + M*)*. Similarly, J (Lip (1, *), E, @) = (Rl + M?*)*. Sher-
bert showed [9, (5.2), p- 253] that clos M? = clos J. We now establish the same result
for D(E). ,

Lemma 2.1, clos M? = closJ.
PrOOF. Let f, ge M. Then there exists f,, g,€ C' such that f,(a) = g.(a) = 0,

| f-fllie—0 and |g-g.)i.e = 0. Thus V(£g)(@ =0, so that there exists
h,€ C? such that &, = 0 on a neighbourhood of 4, and | f,g,~ ] c < 1/n. Thus

h, e Jand I, = /|15 = 0. The result follows.

Thus (R1 + M3+ = (R1 + J)* and (Rl + M?%)* = (R1 + J). Hence, to prove
that every bounded point derivation on D!(E) at the point a extends to a bounded
point derivation on Lip (I, E) at @, amounts to proving that every annihilator of

R1 + Jin D'(E)* extends to an annihilator of R1 + Jin Lip (1, E)*. This brings us
to the two technical lemmas.

Lemma 2.2. The vectorspace sum D'(E) + clos J is a closed subalgebra of Lip (1, E.)

ProoF. The sum of a subalgebra and an ideal is always a subalgebra, so it remains to
prove that the sum is closed. For this it suffices to prove that DY(E) + clos J equals
the closure of C* + J. Obviously, D}(E) + clos J < clos (C! + J).

For the converse, fix f'e clos (C* + J). Choose a sequence f, € C! + J such that
I f=-£lls,e < 1/2"+*. Then | £, ~fus1ll1,z < 1/2". Choose numbers r, ¥0 such that
2r,.1 < r,and f, coincides with a C* function on a neighbourhood of the closed ball
B, with centre @ and radius r,. Choose C! functions ¢, such that0 < ¢, <1, ¢, = 1
onB,,, ¢, = 0off B,,and |V ¢,| < 4/r, (the function ¢,(x) may be chosen to depend
only on |x - a).
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Write f; = g, + h; withg, € C' and h, € J. Inductively, write /4«1 = ga+1 + Pps1»
where g,., € C' and h,, ; € J are chosen as follows. First, define g,41 = @pe1fosr +
(1 = ¢ps1)8n Then g, ., € C! as required. Also, g,,, = f,+, on a neighbourhood of a.

Define iy 4y = fos1 —&nts-

We have
8ni1—8&n = Pns1(fusr1—1o)

Let £, = E n B,. Then we have the following estimates:
”gn+1 _gnHO,E < ”fn+1 —fn”o,zz
”gn-u —gn”’l,E < ”fﬁnnno,fufuﬂ "f;.u'1,E + ”¢n+1”,1,E“f;|+1 "fn”o,z,,“

‘. Ipts ”fn+1 "fu“'mz

Fpiy
=35 ”fu+1 “fnnlx.s
”gn+1 _gnnl,E <5 ”fn+1 "‘fnnl,s
< 5/2".

Thus {g,} is a Cauchy sequence in Lip (1, E), and hence converges to a function
g € D*(E). Furthermore, h, = f, - g, = f— g, hence - g e clos J. Thus fe DY(E) +
clos J. This shows that clos (C! + J) © D*(E) + clos J, and the result follows.

<[ Afovs=fall're +

Lemma 2.3. closJ = DY(E) nclosJ.

Proor. Clearly, clos J = clos (D}(E) nJ) © DY(E) nclos J. To prove the reverse
inequality, fix fe D'(E) n clos J. Let ¢ > 0 be given. Choose g e C* and h € J such
that g(@) = 0, || /- g||1,z < & and | f-&|;,g < & Choose r > 0 such that h(x) = 0
on a neighbourhood of {x : [x —a| < 2r}. Choose ¢ € C* such that ¢ >0, ¢ = 1 for
|x-a| <r, ¢ =0 for |x-a| >2r, and [V¢| <2/r. Define k = (1 - ¢)g. Then
keJ, and k-g=-¢g = ¢(h-g). As in the previous lemma, we estimate

| -g|s.e <5 |h-gly,e hence |k ).z < 1le. Thusfe clos J.
We can now prove the main lemma.

Lemma 2.4. Each bounded point derivation on D'(E) at the point a extends to a
bounded point derivation on Lip (1, E) at a.

ProOF. Let de J(D', E, a). Then d annihilates clos .; Thus, by Lemma 2.3, the

formula:
L(g + k) = dg(g e D'(E), heclos J)

determines a well-defined linear functional on D'(E) + clos J. Let D*(E) @ closJ
denote the outer direct sum of the Banach spaces D!(E) and clos J, with the norm

le ® Al = lels.z + [Als.x
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The linear function A : D(E) @ clos J — DYE) + clos J, (g,h) » g + h, is con-
tinuous and surjective. By Lemma 2.2 and the open mapping theorem, there eXists
x > Osuchthatinf {|g ® k| : ge D'(E),heclosJ,g + h =f} <x | f |,z Whenever
fe DY(E) + clos J. It follows easily that L is continuous on D'(E) + clos J. By the
Hahn-Banach theorem, L has a continuous extension d’ to Lip (1, E). Since d’
annihilates R1 + J,itis a bounded point derivation on Lip (1, E)at the pointa.

Armed with Lemma 2.4 we now proceed to transfer Sherbert’s results from
Lip (1, E) to D'(E).

We define
L6, 07— O-1@
(b-¢|

whenever b, ¢ € E and fe Lip (1, E). Then L(b, c¢) is a continuous linear functional on
Lip (1, E). It is easily seen that L(b, ¢) has norm at most 1 and at least
{1 + (b - c[ [2}~lin Lip (1, E)*. Lety, denote the set of all weak-star cluster points
in Lip (1, E)* of sequences {L(b,, ¢,)}*°,, where b, € E, ¢, € E, b, > a, and ¢, — a.

Let y, denote the set of restrictions to D'(E) of functionals in y,. Let L(b, c) denote
the restriction of L(b ¢).

Clearly each element of W, is a bounded point derivation on Lip (1 E) ata and
each element of y, is a bounded point derivation on D'(E) at a. We note that y,isa
subset of the unit ballin Lip (1 E)* by the Krien-Smulian theorem.

Sherbert [9, (9.3), p. 265] proved that the space J (Lip (1 ) E a) is the weak-star
closure of the linear span of y,in Lip (I E)*. Theresultfor J(D! E a)issimpler.

Lemma 2.5. J(D' E a)isthe linear span of y,.

Proor. By Lemma 2.4 and the result of Sherbert just quoted, J(D!, E, a) is the

weak-star closure of the linear span of y, in DY(E)*. But J(D', E, a) is finite-
dimensional, hence each linear subspace is closed, so the result follows.

Let & denote the linear span of the point evaluations at points of E. Then Lemma
2.5 implies that J(D!, E, a) is contained in the weak-star closure of # in DY(E)*.
Much more than thisis true.

Lemma 2.6. Let dewy, Then d is the weak-star limit in DY(E)* of a sequence
{L(b,, c)}s withb, e E,c, € E, b, — a,and ¢, — a.

Proor. There exists v € R? such that d = d, - (@). There exists d’ € ¢, such that
d'| DY(E) = d. There exists a sequence {L(b’,, ¢’,)} such that b, € E, ¢', € E, b’y = a
¢', — a,and d’' belongs to the weak-star closure of {L(b',, ¢’,)} in Lip (1, E)*.
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Thus d belongs to the weak-star closure in DY(E)* of {L(¥',, ¢’,)}. Choose a function
t € C*suchthat 7(x) = <x, u) for x near a. We have dt = |u|?, hence
b=y u>}
o<

|u|* e clos {Ii(b’,,, ¢t} = clos{

Thus ]ul = 1, and we may choose integers k,, T oo such that

bn - Cy
- u
162 =
where b, = b, and ¢, = ¢, . Then L(b,, ¢,)g = <u, Vg(a)> foralige C*.
Fix fe D'(E). Lete > 0 be given. Choose g € C* such that | /- g||; ; < &. Choose
N such that

'L(bm cn)g - <u1 Vg(a)>l <é
whenevern > N. Then

Ii(bm ) f-d.f@) < |L~(bm )-8 + |L~(bm cg —dga)| + |d.ga) - d,f(a)
< ”f"gnl.E + &+ ”f—gnx,s
< 3¢

whenever n > N. Thus L(b,, ¢,) f — d,f(@). Thus the sequence {L(b,, ¢,)} converges
to din the weak-star topology of D'(E)*. This proves the result.

REMARK. Lemmas 2.5 and 2.6 show that J(D?, E, a) is contained in the sequential
weak-star closure of & in D!(E)*. This contrasts with the behaviour of C!(E). In
[8] we showed that J(C*, E, a) is contained in the sequential weak-star closure of the
sequential weak-star closure of £ in C'(E)*. We use the notation J(C*, E, a) for the
space of sequentially-calculable bounded point derivations on C!(E) at a, that is the
space of derivations d € J(C!, E, a) which are weak-star limits of sequences from Z.

In view of the proof of Lemma 2.6, the set {u € R? : d, - (@) € y,} may be described
as the set of all unit vectors u = lim (b, - ¢,)/ ]b,, - c,,|, where b, € E, ¢, € E, b, - a,and
¢, = a. We denote this set by Tan (E, a) (cf. [5]). The cone generated by Tan (E a) has
been called the Denjoy tangent space of E at the point a. This cone is larger than the
cone denoted by Tan(E, a)in 3, §(3.3). We denote the set {(a, u) :ac E, u € Tan (E, a)}
by Tan E, and we use the notation span Tan E for the fibre-wise linear span

{(a,w) : a€ E, u € span Tan (£, a)}.

With this notation Lemmas 2.5 and 2.6 yield the following explicit description of
J(D', E, a).

Theorem 2.7. Let E be a closed subset of R%, and let a € E. Then
(1) J(D', E,a) = {d," (a) : uecspan Tan (E, a);
(2) J(D', E) = {(a, 4, (a)) : (a, u) € span Tan E}.




O’FARRELL— Point derivations on Lipschitz functions

3. An extension theorem

In [8] we gave an improved version of the C* case of Whitney’s extension theorem.
The proof of our result was better than the statement, in a manner of speaking. In the
present section we formulate a statement which takes full advantage of the proof.
This stronger statement is needed for the main theorem in §4. As a corollary, we
obtain an explicit description of J(C*, E), in terms of Tan E.

The following lemma is easy to prove.

Lemma 3.1. Let Ebeaclosed subset of R®. Then
(1) Tan E is a closed subset of E x R?;

(2) For each point a € E, the set Tan (E, a) is a closed subset of the unit sphere in
R4, symmetric under reflection in the origin.

Let f be a real-valued function defined on a closed set E < R% Let (a,u) e
Tan E. We say that d,f (@) exists if there exists a number « such that

(f (b ~f(eN|by— €] =

whenever b, € E, ¢c,€ E, b, — a, ¢, > a, and (b, - ,,)/}b,, - c,,] — w. If this is so, then
we say that d, f (a) equals a. Obviously, if f e D)(E), then d,f (a) exists for each
(a, u) € Tan E, and equals d, f (@) (as defined in §2). So the definition just given extends

d, | (@) from D'(E) to a certain domain contained in R”.

Theorem 3.2. Let E be a closed subset of R, Let f be a real-valued function on E.
Suppose the following three conditions are satisfied:

(1) d,f(a)exists for all (a, u) € Tan E;
(2) for eacha e E, d,f (a) has a linear extension to span Tan (E, a);
(3) d,f(a) has a continuous extension from span Tan E to clos span Tan E.
Then fhas a C* extension to R°.
As we remarked above, the proof in [8] actually proves the above result. Some

slight adjustments are needed, but it is not worth giving the details.

ReMARK. Not only is Theorem 3.2 more explicit than the result of [8], it is also
completely elementary. The statement and proof require only advanced calculus.

Corollary 3.3. Let E be a closed subset of R°.
Then J(C!, E) = {(a, D, . (a)) : (a, u) € clos span Tan E}.

Proor. See [8, Corollary, p. 320].

Problem. Is it always the case that each derivation in J(C?, E, a) extends con-
tinuously to D!(E)?
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4. Main Theorem

In this section we characterise the closed sets E such that D'(E) = C*(E). The
result is as follows.

Theorem 4.1. Let E be a closed subset of R%. Then the following three conditions are
equivalent

(1) DY(E) = CUYE), that is every function on E which is a Lip (1, E) limit of C*
functions has a C* extensions;

(2) there exists k < O such that

[ fllere = | flue
whenever f € C(E);

(3) there exists k > O such that every bounded point derivation d on C*(E) at a point
of E extends to a bounded point derivation d' on D*(E) with

[ 4 |pipre =« ||d]cren
ReMaRk 1. The main result of this paper is the equivalence of (1) and (3).

ReMARK 2. A sufficient (but not necessary) condition for (2) is that E be uniformly
regular, in the sense of Dales and Davie [2, p. 30]. Incidentally, the space D* (E) of [2]
is not the complexification of ours. Their DY(E) is defined for E < C ~ R? and
consists of functions with a complex derivative at all points of E.

REMARK 3. A sufficient (but not necessary) condition for (3) is that E be uniformly
1-thick, in the sense of [7, p. 381]. A weaker condition is the following:

There exists k > 0 such that for every a€ E there exists a basis {uy, ..., u,}
for span Tan (E, a) such that u; € Tan (E, a), [u;] = 1 and

lui - f akukl >K

whenever x,_€ Rando; = 0.

REMARK 4. We emphasise that (1) asserts the identity of D(E) and C*(E) as sefs,
not as Banach spaces. We conjecture that D!(E) and C'(E) are isometric if and only
if J(DY, E, @)and J(C', E, a) are isometricforalla € E.

REMARK 5. We construct an example E in §5 such that J(D!, E) # J(C?, E). We
construct another example in which J(D!, E) = J(C!, E), but the norms are not
equivalent. This shows that the norm condition cannot be omitted in (3).

Before proving (4.1) we need alemma.

Lemma 4.2. Letfe D'(E)andlet ae E. Thend, f(a) is linear in u on span Tan (E, a).

Proor. If fe C1(E), then the result is obvious. Hence, by continuity, it holds for
fe DY(E).
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Proor or 4.1. By the open mapping theorem, (1) implies (2). Obviously, (2) implies
(3). So it remains to prove that (3) implies (1).

Suppose (3) holds. Fix fe D*(E). We wish to prove that f has a C® extension. By
Lemma 4.2 and Theorem 3.2, we need only show that d, f (2) has a continuous extension
from span Tan E to clos span Tan E. By the hypothesis (3), Theorem 2.7 and
Corollary 3.3, span Tan E is closed. Thus we need only show that d, f (a) is
continuous on span Tan E.

Fix (a, u) € span Tan E. Lete > 0be given, Choose g € C* such that
I -8l < ef3x(u] + 1).

[<u, Vg(a)) - <v, Ve®))| < ¢/3

whenever |a - b| + |u—v| < 8. Then

Choose 8 > 0such that

ld,f(a)-d f(B)] <|d.f(a)-d.g(@)] + |[<u, Vg(@)) - <v, Vg®B))| + |d,g(b) - d.f b)]
< Hdu : (a)”vl(s). f_glll,E + &3 + ”du * (b)”Dl(E)o ”f" g”l,E
<(cul + x o)) | F-glli.e + &3
< g,

whenever (b, v) € spanTan E and |a-b| + |u-v| < 8. This proves that d,f(a) is
continuous on span Tan E, and the result follows.

Corollary 4.3, Let E < Rbe closed. Then D'(E) = C(E).

PROOF. At each isolated point a of E, we have Tan (E, a) = ¢, hence J(D', E, a) =
J(C*, E, a) = {0}. Ateach accumulation point a of E we have Tan (E, a) = {1, -1},s0
that J(D', E, a) = J(C', E, a) = R, and the two spaces of derivations are isometric.
Thus condition (3)is satisfied.

Remark. It is not difficult to find a direct constructive proof of Corollary 3.2, and
to show that D!(E)is actually isometric to C}(E) when E < R.

5. Three examples
Example 5.1, Fix R > 1 and 0 < 8 < #. Choose positive numbers r,, 5, such that
ry = I/R, Fas1 < Tus Snyy < Spy an+1 < Sps RS,, < In S,,/l‘,, - 0: rn+1/sn — 0. Define
a, = (r,, 0), b, = (s, cos 8, 5, sin 0), Let E(f, R) denote the compact set

{0, a, bl’ aa, bz, PP ,}.
Clearly, Tan E = {0} x Tan(E,0) and Tan(E, 0) = {+ (1, 0), + (cos 0, sin 6)}.
Consider the function f (x, y) = y/sin 8 ((x, y) € E). Clearly, f has a C* extension, and

I R _R+1
L e o
17k <+ moT<RoT

1
d 0) = —.
0,1, f(©0) pear
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R-1 1 |
R+1 sing~ 2sinf
provided Ris greater than 3. This shows that

I, @

l40.1y - @] oz >

can be arbitrarily large.

In this example, Tan (£, 0) has four points. By an obvious modification of the
construction one can obtain a compact set £ < R? with Tan (E, 0) equal to any
preassigned symmetric subset of the unit sphere in R?.

Example 5.2. Consider numbers 8, { Oand R, T oo such that R, > 3 and

5 Rn>2max{len—' n_ll_l"0n~9n+1|_l}'
2 -] Let
E, = {(0, 0) + (x, ) : (x, ) € E(0,, R)},
. E={0} VE, .
Bl

Then Eis compact. Provided the R, are large enough, we have

1
2sin 6,
whereu = (0, 1)and a, = (,, 0). Thus condition (3) of Theorem 4.1 is violated, and so
i DY(E) # C(E).
s Furthermore, provided R,6, 1 oo, we have Tan(E,0) = {+ (1, 0)}, so that
3 J(D', E, 0) has dimension 1. But J(C', E, a,) has dimension 2 for each n, hence
. 0 = lim g, eclos E, = E|, thatis J(C!, E, 0) has dimension 2.

”du : (an)”m(z) > t o0,

2 Example 5.3. Let E be the set of the last example, and form
H=Eu{(0,y):0<y <1}

Then J(D', H, a) = J(C', H, a) for every point a e H, but |d, - (a,)]|pscr). T oo with
u = (0, 1) and a, = (0,, 0). Thus every bounded point derivation on C'(E) extends to
D'(E), but the norm condition fails.

6. A sufficient condition for /¢ DY(E)

Here we present another application of the results in Section 2.

We begin by proving that for fe D'(E), the function d,f(a) is continuous on
Tan E, as a function of (a, u). This allows us to ask the following question: suppose
feLip (1, E), and d,f(a) is continuous for (a, u) € Tan E. What additional hypothesis
will guarantee that f'e D'(E)? For each point a € E, the set Tan (E, a) consists of a
number of directions. We show that if f has an extension in Lip (1, R%) such that the
29 directional derivative <u, Vf(a)> (defined a.e.) is approximately—continuous at a
whenever u € Tan (E, a), thenf € D'(E).
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Lemma 6.1. Let fe DY(E). Then d,f(a) is continuous on Tan E, as a function of
(a, u).
Proor. Fix(a, u) € Tan E, and lets > 0 be given, Choose g € C* such that
| /-l £ < & Choosed > Osuch that
[<u, Vg(a)y - <o, Ve®)| < ¢
ifla - b| + |u-v| < 8. Then
d.f (@) - d.f(b)| <|d.f(a)-d.g@)] + |<u, V&(@)) - <v, Vg(®)| + |dg(b,) - 4.1 ()]
<|f-glie+e+|/-glie
< 3¢

whenever (b, v) € Tan Eand [a~ b| + |u- 0| < 8, sinced, - (¢)andd, - (b) have norm 1
in D!(E)*. Thus d,f (a) is continuous on Tan E.

Let #? denote Lebesque measure on R% If f belongs to Lip (I, RY), then the
Frechet derivative Vf(a) exists #* almost everywhere [3, (3.1.6), p. 216]. For each
u € R, the directional derivative {u, Vf(a)> is a measurable function of a, and belongs
to L®(R?, #%). Indeed,

I<w, V7Ol <l [/ ]1 5

forallu e RY

It is important to distinguish between d,f (@) and {u, Vf(a)). If fe Lip (1, RY,
then d, f (a) may exist for some (or none, or all) (@, ¥) € span Tan E. It depends only
on the restriction of fto E. On the other hand, <u, Vf (@) exists for #¢ almost all
aandallu. Iffe C', and (@, u) € span Tan E, then the two exist and are equal.

The existence of d, f (@) neither implies nor follows from the existence of {u, Vf{(a)>.
Furthermore, even if both exist, they need not be equal.

Recall that a real-valued measurable function A(x) is approximately-continuous
ata pointa € R?if, givene > 0, there exists § > Osuch that

LUxeR:|x-a| <1, |hx)-ha)| > e} <t
whenever 0 < ¢ < § (that is, the inverse image of each neighbourhood of h(a) has
full density at a).
Theorem 6.2. Let E be a compact subset of R%, and let f€ Lip (1, R%). Suppose that
the following two conditions hold:
(1) d,f(a) existsfor all(a, u) € Tan E;
(2) foreach(a, u) € Tan E, the function h(x) defined by

h(x) = <ll, Vf(x)>, for a.a. x # a,
duf(a)a forx =aq

is approximately-continuous at a. Then f l Ee DY(E).
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, PRoOF. We may assume that ||/, e = 1. This implies that [<u, V/(@)>] < |u|
: .,é almost everywhere, hence, by condition (2), |d,f (a)| < 1for(a, u) e Tan E.
; Choose a sequence {¢,}®, of C* functions such that
(@) 0 < ¢, <(10my,
() ¢, = Oofftheball B, = {xe R*: |x| < 1/n},
3 © § ¢, d* = 1.

E Define f, as the convolution ¢,*f. Thenf, is a sequence of C! functions. We claim that
4 Jfconverges to f weakly in Lip (1, E).

‘# Jz 1}

3 We shall prove this claim by using the following characterisation of sequential
3 weak convergence in Lip (1, E), due to Sherbert [9, (9.9), p. 269]:

R

Let E be compact, and let £, f, € Lip (1, E). Then f, — f weakly in Lip (1, E)if
and only if the following three conditions hold:

(@) {f.}isboundedin Lip (1, E) norm,
(i) f, — fpointwise on E

P (iii) df, - dffor all bounded point derivations, , on Lip (1, E).
‘ Fix (g, ) € Tan E. Let¢ > 0 be given. Choose N such that
Pix i |x—d| < 1 [ V> ~df@lye} < %,
; whenevern > N. Then forn > N, we have
[, V4@ - A1 @] = [ (B VN@) - 4f @)
1 =1 [ 9t Vr@-0>-ds@) az

< f 6,09 <, Vf @@= %)> - duf (@) d%.

3 Now l(u, Vf(a-x)>-d,f(a)| <eforxeB, ~ A, where ¥4 < &/n, hence we may
iy continue the inequality:

<j. Pu(x) e dL + j (10n)* - 2d.%*

< (1 + 107 2e.
Thus d,f(a) = <u, Vf(a)> — d,f(@)asn — oo. This holds for all (a, v) € Tan E.

For almost all a e R?, the function <u, Vf(a)) is linear in . Hence by condition
(2), for all ae E, the function d,f(a) has a linear extension from Tan (E, @) to
span Tan (E, a). We denote this extension by the same symbol d, f (a).

RS A e b
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Let d be any bounded point derivation on Lip (1, E). Then the restriction d [ DYE)
equals d, - (@) for some (a, u) € span Tan E. Let d' span y, be such that d’ | D'(E) =
d,-(@). Then d’ = a,d, + ... + a,d,, where ;e R and d;e y,. Let d;| D'(E) be
d, -(a). Thenu = o u; + ... + a,u,, and there exists b’/,, ¢/, € E such that b/, — q,
cf,: - a, (b, - )/|pn - ¢/i| = wu; and d; belongs to the weak-star closure of
{L(’,, ¢,)} in Lip (1, E)*. Since d, f(a) exists, we have L(b/,, ¢/,) f = d, f(a), hence
d;f = d, f(a). Since d,f(a) is linear in u, we obtain d’f = d, f(a). Now d belongs to the
closure of the set of d’e span y, such that d’ ] DY (E)equals d, - (a). Thus df = d,f(a)

Furthermore,

duf(a) = .Zaj du;f(a)
J

= Zo;limd, fa)

= lim d, f,(a)
= lim df,.

Thus df, — df. So condition (¢) holds.

It is easy to check conditions (a) and (). Thus, £, converges to fweakly in Lip (1, E),
as claimed. So f belongs to the weak closure of C! in Lip (1, E). But the weak closure
of a linear subspace coincides with its norm closure, hence f € D'(E).
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