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ABSTRACT

This paper explains how the Weierstrass theorem may be generalised in five distinet
ways without going bevond two dimensions.

Introduction

The Weierstrass theorem states that each real-valued continuous function on the
interval [0.1] is the uniform limit on [0,1] of 2 sequence of polvnomials pixye Kzl 1
is remarkable in how many ways il can be generalised and extended: My purpose in this
paper is to describe five natural generalisations. Two are famous. The others are less
well known. Each way involves uniform polynomial approximation in the plane, and
they are all -quite distinct. '

If Fis R or U7, and .../, are F-valued functions on a compact space X, then
Fl [y Sy} denotes the F-glgebra of functions generated by Sy s We denote by
C{X,F) the uniform algebra of all continuous F-vaived functions on X.

When [0,1] is replaced by an arbitrary compact set X & #2 = (", then there are a
number of options for what should replace p{x) £ Klx]. The most obvious are:

1) plx) e Rix], plxy) e Rixal or p(f fi) € RIS [, where cachj_', belongs

CX, R).
(2) pl2)e Clz), or p() e ClS), where fe CLX, 0D
(3) pSynr i) € Ul Sy Syl where each [ e C(X,0).

(4) p(x) + g e Rlx] + Rlplorp (/) + . + p0/) ¢ RIfi] + ... = RIF,], where each
[eCR).

(5) pz) + g@) e Clzl + ClZ) or () + o+ p S € UIA) + o + ClLf, ) where each
SeCx0)

In each case we may ask: for which X" is the given class of polvnomials dense¢ in
C{X. 1) or C(X, ). whichever is appropriate? Some of these questions are very difficull.
and not all the answers are known.

1. Case (1) : Stone’s theorem
The complete solution is given by Stone’s theorem | 2] which in this context takes the

following form.
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Theorem. Let X C k2 be compact and let fyviJo€ CLX.R). Then a necessary and
sufficient condition for RISy S} 10 be dense in C(X.R) is that fy,.... [, separate poinis
on X, (i.e. for each pair a= b of points of X, there exist j such that f{a)= JLbY)-

In particular, Rix,p] is always dense in C(X, R), and Rlx] is dense in C(X, K) if and
only if the projection of X into the x-axis is one-one.

2. Case (2) : LavrentiefP’s theorem
2.1 For pl(z). the complete solution is given by Lavrentiefl's theorem 12}
Theorem. Let X C ( be compact, with no interior. Then (lz) is dense in C(X,0) if
and only if C~ X is connected. :
2.2 For p{f), we obtain the following immediate corollary.
Corollary. Let X € C be compact, with no interior, and let f € C(X, ). Then Ul f1is
dense in C(X,C) if and only if f is injective and C ~f(X) is connected.

3. Case (_3) ; Appro_ﬁmaﬁon on surfaces in ("

3.1. If a realvalued function -h belongs to Clfyefy)s then the extreme norm 1
annihilating measures on X for C{fy,.., f,) are supported on the level sets.of A. This is
seen by an argument of ‘de Branges (see.15]). Because of this fact, it is enough 1o
consider the case in which Clf,.....f,) contains no nonconstant real-valued functions. -

3.2. The p,robic'ﬁx_ can bé"r‘ephras_dd as 'fpilpivs. Let Y denote the setin (" defined by

'_Y - ,U-_‘Sw)_"_;_-,'}fu_(w) WEX}

Then ¢l Sy f,) is uniformly dense in ©(x, C)if and only if f,,..../, separate points on
X and Clz,,...,2,) is uniformly dense in C(¥.C). '

Now by the Oka-Weil theorem Clzy,....z,] is dense in C(Y,C) if and only if (1) Yis
polynomially-convex, and (2) © (Y} (= the space of all functions holomorphic on a
neighbourhood of ¥ in C*) is dense in' C(Y). This allows us to break the problem into

5

two parts. . .

Our understanding of the second part is more satisfactory than that of the first. Let
" X =D, the ¢losed unit disc. Then Y is & bordered real submanifold of C* If Yis a
bordered complex submanifoid, then obviously & (¥) is not dense in Y, (), because
all functions in the closure of & (Y)are analytic on the interior of ¥. This fact makes it
reasonable to look for measures of non-analyticity of Y. The most obvious condition,
for C! functions f}, is that for cach a £ D st least one of the products dfj{a) A df,(a) be
nonzero. This is equivalent to saying that Y has no complex tangents, i.e. that the real
tangent plane to Y'is never a complex tine. The following theorem is due in its final form
to Range and Siu [8]. Earlier versions, with more stringent smoothness reguirements,
were proved by Hormander and Wermer, and Nirenberg and Wells.

Theorem. Suppose Y is a _bardered C, surface in (", with no complex iangents. Then
¢ (Y) is dense in c(y,). '
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3.3. Suppose now that SirD—= C are C, functions, separate points on D, and that the
corresponding surface ¥ C (* has no compiex tangents. What additional hypothesis
will make ¥ polynomial!y-convex'.’ Not much is known about this. Resulis 10 date
concern the case Clz,f). It is conjectured that if [ is a direction-reversing

homeomorphism, then
Y= {{zwiw= f(), z e Dy

is polvnomially-convex. In terms of derivatives, f is locally direction:reversing if and
only if |f;{ > 1fi], where
fi = = 1)

fi = ¥ + T

We quote some partial results.

nd rhere exists k, 0 <k < L, such

Theorem. (i) (Wermer {9]) Suppose fj=i+R.a
Then Y is polynomially-convex.

that |R(z)) — Rz} € xiz;, — 2,| for all 2.z, ¢ D

(i) 16] Suppose Re [; 2 1f,| &e in D. Then Y is polynomially-convex.

(i) (7] Suppose { is analyric on int.D. Then Y is polvnomially-convex.

3.4. A noteworthy result for three functions is the follq\-wing (5).

Theorem. Suppose f.g, and hare homeomarphisms of C onto C, and deg f=—deg g.
Then Cl f,ghl) is dense in on.O.

4. Case (4) : Tchebyshev approximation .

41, La X C R’ be compact, and it 7, =X - R {j=12) be the projections of A

into the coordinate axes, ie. the funcdons x and .
Consider the question: for which X is Rix] + RLy] dense in C(X, R)? In view of the

Weierstrass theorem, the closure of Rlx] + Rly]is the same as the closure of the space

of functions of the form f(x) + g0, with continuous f and g.
A trip in X is a sequence 8,03, of points of X such that

nla,) = n‘,(aa), m,(a;) = (ay). a(ay) = 78} we -

Given 2 trip t = {a,). consider the point masses &a,) and the measures

1) = (Ba) — 8a) + o = (21 B

she unit ball of the space M(X, R) =CX, R)* and so they
have at Jeast one weak-star limit point (possibly the zero measure). Each weak-star limit
point g is an annihilating measure for Rix} + Ry). If the sequence {w,} is actually weak-
star convergent to i, then we say that u is generated by the trip 1.

These measures g, belong 10
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Theorem {Marshall and O'Farrell). Each extreme norm 1 annihilating measure for
Rlx] + Ry} is generated by some 1irip. .

The proof of this theorem will appear in a later paper. An immediate corollary is the
solunon 10 the epproximation problem.

4.2. Corollary. Rlx] + Rly] is dense in C(X, R) if and only if p (1) tends weak-star to
zero for each trip.

This gives an effective criterion for analysing examples.

4.3. In a special case, a simpler criterion works. The orbit of & point 2 € X" is the set of
all points b ¢ X suchthata= a and b = a,, for some trip {a,} and some . A round trip
is a periodic trip with q,#a, . ,; for each n.

Theorem [4.7). Suppose each orbir is closed. Then Rix] + Rly] is dense in C(X,R) if
and only if there are no round irips.

Another way of putting it is that Rlx] + R[y) is dense in C(X, R) if and only if
Rix] + Rly) is dense in C(¥,R) for each finite ¥ C X (provided each orbit is closed).
There s an example of Havinson which shows that this cmenon docs not work in
general (3]

s

. opp—

4.4. These results generalise without difficulty to the vectorspace sum 4, + A, of two
subalgebras (with identity) of C(X, R). Let x, denote the quotient space of X obtained by :
identifying points which A, fails to separate, and let z, : X ~ X, be the natural projection ‘
map. Then trip, orbit, generated, and round irip may be defined a5 abovc, and all the I p
resu]:s go through.

- The sum of more than two subalgebras presemts formidable problems

4.5, We may also ask when each h(xp) e C(X,R) may be represemed es a sum f(x) +
() with continuous [ and g Thls is solved by combmmg Coral'ary #.2 with the
following.

Let Z denote the quoucnt space of X induced by R[x] M R[y], and ict miX—+2Z be
the projection. This means that the (closed) sets E = z~Y(z) ar¢ maximal-with respect to
the propérty that f(x}=g(y) forces f= constant on E. ‘l'jus means ‘that E contains
the closure of the orbit of each point of E.

ForTC X, ‘var Jfdenotes sup J- mff

Theorem {4, Prop.4l. The subspace
‘clos Rlx} + clos R
is ciased in C(X, R) if and only if there exists x > O such that

sup var f{x)<« sup var f(x)
16z i) yoxgn =5t -.

Jor all continuous functions f : 7(X) - R.
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A more explicit version of this condition is that there exist an integer N such that, given
z ¢ Z and a,b £ M '(2), there exists 7 < Nand @a=a,dsmlg.1 = be R, and yVi €
m,(X) such that g and g, belong to n,m3'(y), for j=L...n.

5, Case (5) : Generalised Walsh-Lebesgue theorem
5.1. pz)y + qd) is covered by the following.

Theorem {W alsh-Lebesgue [2]). Ciz) + Cl2) is dense in C(X,C) if and onlv if X is the
boundary of a compact set Y with connected complement C ~ Y.

52. For CLf;] + CLA), the main result available concerns homeomorphisms.

Theorem {5). Let fand g be homeomorphisms of C onto C with deg [ = —deg g. Let
X = bdy ¥, where Y C C is compact and C ~ Y is connected. Then C{f] + Clglis

dense in C(X.C).

The Walsh-Lebesgue theorem is the case f=z.g=7 Thecase X = 51, the unit circle,
is due to Browder and Wermer i1l
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