Restriction Algebras

1981 version

Anthony G. O'Farrell

1981-4

КОМПЛЕКСНЫЙ АНАЛИЗ И ПРИЛОЖЕНИЯ'81 София, 1984 COMPLEX ANALYSIS AND APPLICATIONS' 81 Sofia, 1984

RESTRICTIONS OF UNIFORM ALGEBRAS

Anthony G.O'Farrell

1. The diagram. Let A be a complex uniform algebra on a compact Hausdorff space X [2, p. 32]. This paper is about the family of sets $E \subset X$ for which the restriction algebra $A \mid E$ is uniformly closed. For background, cf. [1;2;3;5;7;8]. More details of the results described here will appear in the Proceedings of the Royal Irish Academy.

The algebra $\ensuremath{\mathcal{A}}$ induces certain families of subsets of $\ensuremath{\mathcal{X}}$, as follows:

 \mathcal{W} is the family of weak-star closed subsets of X, regarding X as a subset of the unal A^* (the "original" closed sets).

 \mathcal{L} is the family of A-convex subsets of X, i.e. $E \in \mathcal{L}$ if and only if E equals the A-convex hull of E (in X), which is the set $\{\alpha \in X: |f(\alpha)| \le ||f||_E$ where $\|f\|_E$ denotes the uniform norm of f on E.

 \mathcal{H} is the family of hull-kernel closed subsets of X, i.e. $E \in \mathcal{H}$ if and only if $E = \{\alpha \in X : f(\alpha) = 0 \text{ whenever } f \in \ker E \}$, where $\ker E = \{f \in A : f|E = 0\}$ (f|E denotes the restriction of f to F).

 \mathcal{R} is the family of A -convex sets E such that $A \mid E$ is closed. The reason we restrict attention to A -convex sets is that for any $E \in X$, with A -convex hull F, the restriction algebra $A \mid E$ is closed if and only if $A \mid F$ is closed.

 \mathcal{R}_{j} is the family of A -convex sets E such that the quotient $A/\ker E$ is isometric to the restriction algebra A/E, i.e. given $f \in A$ and E > 0, there exists $g \in A$ such that g/E = f/E and $\|g\|_{Y} \triangleq (1+E)\|f\|_{E}$.

 ${\cal J}$ is the family of interpolation sets, i.e. those ${\it EcX}$ such

The preprint follows.

It is more legible
than the printed text.

Le In the end, fewer details appeared there!

Restriction Algebras

Anthony G. O'Farrell

<u>Abstract</u>. Let A be a uniform algebra on a compact Hausdorff space X. We discuss the diagram of inclusions

in which $\mathcal W$ is the family of weak-star closed subsets of X, $\mathcal E$ is the family of (relatively) A-convex sets, $\mathcal H$ is the family of (relatively) hull-kernel closed sets, $\mathcal R$ is the family of sets $E \in \mathcal E$ such that the restriction algebra A|E is closed in C(E), $\mathcal R_1$ is the family of sets $E \in \mathcal W$ such that A|E is isometric to $A/\ker E$, $\mathcal P$ is the family of p-sets, $\mathcal P$ is the family of interpolation sets, i.e. sets $E \in \mathcal W$ such that A|E = C(E), and $\mathcal P_1 = \mathcal P \cap \mathcal R_1$ is the family of isometric interpolation sets. We discuss the behaviour of these families under union and intersection. We give a new sufficient condition for the equality $\mathcal H = \mathcal P$. This yields a "Rudin-Carleson theorem" for hypodirichlet algebras of analytic functions.

§1. Introduction.

(1.1) Let A be a complex uniform algebra on a compact Hausdorff space X $\boxed{2}$, p.32]. This paper is about the family of sets $E \subset X$ for which the restriction algebra A|E is uniformly closed. For background, cf. $\boxed{1,2,3,5,7,8}$.

The algebra A induces certain families of subsets of X, as follows:

- (1) $\mathcal{T}_{\mathcal{A}}$ is the family of <u>weak-star</u> closed subsets of X, regarding X as a subset of the dual A* (the "original" closed sets).
- (2) \mathcal{L} is the family of A-<u>convex</u> subsets of X, i.e. $E \in \mathcal{L}$ if and only if E equals the A-<u>convex hull</u> of E(in X), which is the set

$$\{a \in X : |f(a)| \le ||f||_F \text{ whenever } f \in A\},$$

where $\|f\|_F$ denotes the uniform norm of f on E.

(3) \mathcal{A} is the family of <u>hull-kernel closed</u> subsets of X, i.e. $E \in \mathcal{A}$ if and only if

$$E = \{a \in X : f(a) = 0 \text{ whenever } f \in \ker E\}$$
,

where

$$ker E = \{f \in A : f | E = 0\},\$$

where $f \,|\, E$ denotes the restriction of f to E.

(4) R is the family of A-convex sets E such that A|E is closed. The reason we restrict attention to A-convex sets is that for any

 $E \subset X$, with A-convex hull F, the restriction algebra A|E is closed if and only if A|F is closed. This is proved in (2.2) below.

- (5) \mathcal{R}_1 is the family of A-convex sets E such that the quotient A/ker E is isometric to the restriction algebra A|E, i.e. given $f \in A$ and $\varepsilon > 0$, there exists $g \in A$ such that g|E = f|E and $||g||_X \leqslant (1+\varepsilon)||f||_E$.
- (6) \mathcal{G} is the family of <u>interpolation sets</u>, i.e. those $E \subset X$ such that E is weak-star closed and A|E = C(E).
- (7) \mathcal{Y}_1 is the family of isometric interpolation sets, i.e. those E ε \mathcal{Y} such that C(E) is isometric to A/ker E.
- (8) \mathcal{O} is the family of p-sets in X, i.e. intersections of peak sets [2, p.56].
- (9) \mathcal{G}_{Ω} \mathcal{G} is the family of p-interpolation sets.

The relationship between these families is expressed in the following diagram, in which each arrow is an inclusion map.

(1.2) Some of these inclusions are obvious. The inclusion $\mathcal{O} \to \mathcal{R}_{\mathbf{1}}$ is due to Glicksberg [5;2, p.58]. It implies the inclusion $\mathcal{S} \cap \mathcal{O} \to \mathcal{S}_{\mathbf{1}}$.

The inclusion $\mathcal{R} \to \mathcal{H}$ is due to Bernard [1]. The inclusion $\mathcal{S} \to \mathcal{R}$ implies the inclusion $\mathcal{S}_{1} \to \mathcal{R}_{1}$. We include brief proofs of the inclusions $\mathcal{R} \to \mathcal{H}$ and $\mathcal{S} \to \mathcal{R}$ in (2.4) and (2.5).

- (1.3) Each inclusion in the diagram may be proper. We are interested mainly in the case when X = M(A), the maximal ideal space of A, and the case when $X = \coprod (A)$, the Šilov boundary of A. In both cases, each of the inclusions in the diagram may be proper. We give examples in (2.6) (2.11).
- (1.4) Each of the families $9n\mathcal{O}$, \mathcal{O} , \mathcal{H} , \mathcal{L} , and \mathcal{W} is known to be an F-topology, i.e. is closed under finite unions and arbitrary intersections. Clearly, the families 9 and 9_1 are directed downward (i.e. closed under subsets), and hence are closed under arbitrary intersections. In (3.1) and (3.2) we give examples to show that none of \mathcal{R} , \mathcal{R}_1 , 9, 9_1 need be closed under finite unions, and that \mathcal{R} and \mathcal{R} may fail to be closed under finite intersections. In (3.3) we show that if X = M(A), E and F are disjoint elements of \mathcal{R} , then $E \cup F \in \mathcal{R}$.

We mention some other positive results. Glicksberg [5, pp.424-425] noted that $E \in \mathcal{P}$ and $F \in \mathcal{R}$ imply $E \cup F \in \mathcal{R}$. A similar argument shows that $E \cap F \in \mathcal{R}$ also. The family \mathcal{R}_1 is closed under nested intersection.

(1.5) Consider the problem, under what circumstances equality obtains between $\mathcal R$ or $\mathcal S$ and one of the other families in the diagram. Apart from the fact that a diagram of inclusions always prompts such a question, there is a natural reason for studying it: the families $\mathcal O$,

月, ん, W may admit explicit description, so that an equality permits the explicit description of ${\mathcal R}$ or ${\mathcal Y}$. Consider, for instance, the disc algebra A on the unit circle X. Then $\mathcal{O} = \mathcal{R}_1 = \mathcal{R} = \mathcal{H}$, and $900 = 9_1 = 9$, and $\Omega = 90\{X\}$. The family 9 consists of the closed sets of length zero. These facts are the Luzin-Privaloff and Rudin-Carleson theorems. They extend to the polydisc [7] and ball [8] in C^n . Glicksberg showed that, in general, O is the family of sets E ϵ \sim such that $\mu|E$ annihilates A whenever the measure μ annihilates A. This yields even more explicit descriptions of ${\cal O}$ in special situations. Thus interest focuses on the equation \mathcal{R} = \mathcal{P} . Glicksberg showed that R = P if $X = \coprod (A)$ and A is logmodular, and Bernard obtained the stronger conclusion $\mathcal{H} = \mathcal{O}$ under the assumption that A has unique representing measures on $X = \coprod (A)$ and that M(A) is "bien-partagé" (the representing measure for each point of each Gleason part P of A is supported on the weak-star closure of P in M(A)). These results apply to many examples, but they fail to cover such simple algebras as A(U), where U is an annulus. In (4.1)we prove a result which yields a "Rudin-Carleson theorem" for A(U) whenever U is a plane domain bounded by a finite number of closed curves, and which also covers some infinitely-connected U.

- §2. The diagram.
- (2.1) <u>Lemma</u>. <u>Let</u> $E \subset X$ <u>and let</u> $A \mid E$ <u>be closed</u>. <u>Then</u>

 hull ker E <u>equals the</u> A-convex hull of E,

 and $A \mid F$ is closed whenever $E \subset F \subset$ hull ker E.

<u>Proof.</u> By the open mapping theorem, A|E is closed if and only if there exists M>0 such that each $f \in A|E$ has an extension $g \in A$ such that $||g||_X \le M||f||_E$. Let A|E be closed, let M be so chosen, and let $E \subset F \subset \text{hull ker } E$. Let $f \in A$. Then f|E has an extension $g \in A$ such that $||g||_X \le M||f||_E$. Since f = g on E, it follows that f = g on F, so g extends f|F and $||g||_X \le M||f||_F$. Thus A|F is closed.

In general, hull ker E contains the A-convex hull of E, since $\mathcal{H} \subset \mathcal{L}$. If A|E is closed, if M is as above, and F = hull ker E, then clearly $||f||_F \leqslant M||f||_E$ for all $f \in A$. Replacing f by f^n and taking roots and limits we conclude that $||f||_F \leqslant ||f||_E$, so that F is contained in the A-convex hull of E. This completes the proof.

(2.2) Theorem. Let $E \subset X$, and let F be the A-convex hull of E. Then A|E is closed if and only if A|F is closed.

Proof. In view of the lemma, it remains to prove the "if" point.

Suppose A|F is closed. Choose M>0 such that for each f ϵ A the function f|F has an extension g ϵ A such that $||g||_X \leqslant M||f||_F$. Then, since $||f||_F \leqslant ||f||_F$, we see that A|E is closed.

(2.3) The above theorem fails if the A-convex hull is replaced by the

hull-kernel closure. Consider, for example, the disc algebra A on either the unit circle X = LL(A) or the closed disc X = M(A). If E is a closed semicircle, then $A \mid E$ is not closed, yet hull ker E = X.

(2.4) Corollary. $R \subset \mathcal{H}$.

Proof. This is immediate from Lemma (2.1).

(2.5) Corollary. 9 - R.

<u>Proof.</u> Let $E \in \mathcal{F}$, and let F be the A-convex hull of E. Then A|F is isometrically isomorphic to A|E = C(E). If $F \land E$ were nonempty, then C(E) would admit an algebra homomorphism onto ℓ , other than evaluation at points of E, which is impossible.

It is easy to see that & need not equal $^*\mathcal{W}$. It is less obvious that & need not equal $^*\mathcal{W}$ if X = LLL(A). An example is the "thumbtack" [8, p.206].

Using Bishop's criterion [2, p.59] it is easy to see that $\mathcal{L} = \mathcal{W}$ if and only if each point of X is a p-point (generalized peak point).

- (2.7) Example. $\mathcal{H} \neq \mathcal{L}$. The disc algebra on $\mathcal{L}\mathcal{U}$ (A)
- (2.8) Example. $\mathcal{R} \neq \mathcal{H}$.

In (3.1) below we give an example in which there exist E,F ε $\mathcal R$ such that E \cup F $\not \in$ $\mathcal R$. Since $\not \mapsto$ is an F-topology, we must have $\mathcal R \neq \mathcal H$.

(2.9) Example. $\mathcal{G}_1 \neq \mathcal{G}$, hence $\mathcal{R}_1 \neq \mathcal{R}$.

If a and b belong to the same Gleason part of A, and $E = \{a,b\}$, then $E \in \mathcal{S} \sim \mathcal{S}_1$. Thus $\mathcal{S} \sim \mathcal{S}_1 \neq \emptyset$ whenever X meets some Gleason part in two or more points. This can occur even for $X = \coprod (A)$. Take, for instance $X \subset \mathbb{C}$ with no interior such that $R(X) \neq C(X)$ [2, p.25; p.54; p.146].

(2.10) Example. $P \cap \mathcal{G} \neq \mathcal{G}_1$, hence $P \neq \mathcal{R}_1$.

Take $E = \{a\}$, where a is a non p-point on X. An R(X), as above, gives an example with $X = \coprod (A)$.

(2.11) Example. $\mathcal{O} \cap \mathcal{G} = \mathcal{G}_1 = \mathcal{G} \neq \mathcal{R} = \mathcal{R}_1 = \mathcal{O} \cap \mathcal{R}$.

The disc algebra.

- §3. Unions and intersections.
- (3.1) Example. None of \mathcal{G}_1 , \mathcal{G}_1 , \mathcal{R}_2 , \mathcal{R}_3 is closed under union.

We shall give an example of E,F ϵ 9 $_1$ with E \cup F \notin \Re .

Let a_n be a sequence of positive numbers, decreasing to zero, and let $r_n > 0$ be such that the closed discs D_n with centres a_n and radii r_n are disjoint. Let $X = \{0\} \cup \bigcup_{n=1}^{\infty} D_n$, and let A be the algebra A(X) of all functions, continuous on X and analytic on int D_n for each n. For each n, pick b_n ϵ int D_n , $b_n \nmid a_n$, such that the Gleason distance $p(a_n,b_n)$ is less than 4^{-n} . Let $E = \{0,a_1,a_2,\dots\}$ and $F = \{0,b_1,b_2,\dots\}$. Then, obviously, E and E are isometric interpolation sets, and E of E is dense in E of E. Suppose E of E. Then E of E is dense in E of E and E of E and E of E of E of E of E and E of E o

$$2^{-n} = |g(a_n) - g(b_n)| \le 4^{-n}||g||_X$$

for each n, which is impossible.

This A is generated by one element.

By replacing the discs D_n by Swiss cheeses, we obtain an example in which $X = \coprod (A)$.

(3.2) Example. Neither $\mathcal{R}_{\scriptscriptstyle 1}$ nor \mathcal{R} is closed under intersection.

Let E and F be disjoint copies of the set X constructed in (3.1), and let X be the space obtained by identifying the O of E with the O of F, the \mathbf{a}_n of E with the \mathbf{a}_n of F, and the \mathbf{b}_n of E with the \mathbf{b}_n of F, for each n. Let A be the algebra of functions $\mathbf{f} \in C(X)$ such

that $f|E \in A(E)$ and $f|F \in A(F)$. Then E and F belong to Ω_1 , because A|E = A(E) and A|F = A(F), as is easily seen. But $A|E \cap F$ is $A(E)|E \cap F$, and is not closed, as we saw in (3.1). Thus $E \cap F \notin \Omega$.

(3.3) Theorem. Let
$$X = M(A)$$
 and let $E, F \in \mathcal{R}$, with $E \cap F = \emptyset$.
Then $E \cup F \in \mathcal{R}$.

<u>Proof.</u> We employ the following characterisation of \mathbb{R} , due to Glicksberg [5]. Let E ε \mathscr{L} . Then A|E is closed if and only if there exists $\kappa = \kappa(E) > 0$ such that

$$\operatorname{dist}\left[\mu,(A|E)^{\perp}\right] \leqslant \kappa \operatorname{dist}\left[\mu,A^{\perp}\right]$$

whenever μ is a measure supported on E, where A^L denotes the space of measures on X which annihilate A, and $(A|E)^L$ denotes the space of measures on E which annihilate A.

Let $\kappa(E)$ and $\kappa(F)$ be chosen as above.

Since E and F are disjoint and hull-kernel closed, the ideal $\ker E + \ker F$ is contained in no maximal ideal. Since A is a Banach algebra,

$$A = \ker E + \ker F$$
.

Choose $f \in \ker E$ and $g \in \ker F$ such that f+g=1.

Let μ be a measure supported on E \cup F. Then μ = $f\mu$ + $g\mu$, $f\mu$ is supported on F and $g\mu$ is supported on E. There exist annihilating measures σ and τ , supported on E and F, respectively, such that

$$\|\sigma - g\mu\| \le \kappa(E) \operatorname{dist} \left[g\mu, A^{\perp}\right],$$

 $\|\tau - f\mu\| \le \kappa(F) \operatorname{dist} \left[f\mu, A^{\perp}\right].$

Now clearly dist $\left[f_{\mu},A^{\perp}\right] \leqslant \left\|f\right\|_{X} \operatorname{dist}\left[\mu,A^{\perp}\right]$, since $f_{\lambda} \in A^{\perp}$ whenever $\lambda \in A^{\perp}$, and similarly dist $\left[g_{\mu},A^{\perp}\right] \leqslant \left\|g\right\|_{X} \operatorname{dist}\left[\mu,A^{\perp}\right]$. Thus

dist
$$\left[\mu, (A|E \cup F)^{L}\right]$$

$$\leq \|\mu - \sigma - \tau\|$$

$$\leq \left\{ \kappa(E) \|g\|_{X} + \kappa(F) \|f\|_{X} \right\} dist \left[\mu,A^{\perp}\right].$$

Thus, by Glicksberg's characterisation, EUF ϵ lpha .

- §4. Equality between different classes.
- (4.1) Theorem. Let A be a uniform algebra on X \subset M(A).

 Suppose (1) A has no completely-singular annihilating measures on X, (2) for each a ε M(A), each representing measure for a on X is supported on the hull-kernel closure in M(A) of the Gleason part of a, and (3) for each a ε M(A) and each representing measure ν for a on X, there exists a Jensen measure μ for a on X, with $\nu < < \mu$. Then

<u>Proof.</u> Glicksberg [5;2, p.58] showed that $E \in \mathcal{O}$ if and only if $\mu \mid E \in A^{\perp}$ whenever $\mu \in A^{\perp}$. Bernard [], p.377] deduced that if $E \in \mathcal{O}$, then E is <u>ergodic</u> for all representing measures for A on X, in the sense that if μ is such a measure, then $\mu(E)$ is 0 or 1. If A has no completely-singular annihilating measures, then by the general A. And A. Riesz theorem [2, p.45, (7.11)], if A is ergodic for all representing measures, then A is the family of sets which are ergodic for all representing measures.

Suppose $E \in \mathcal{F}$. We wish to show that $E \in \mathcal{O}$. It suffices to take $E = f^{-1}(0)$ for some $f \in A$. Let τ be a representing measure for a point $a \in M(A)$. We wish to show that $\tau(E) = 0$ or 1. Suppose $\tau(E) > 0$. Let $P \subset M(A)$ be the Gleason part of a, and let b be any point of P. Then b has a representing measure ν on X such that $\tau \ll \nu$ [2, p.143,(1.2], hence $\nu(E) > 0$. By hypothesis (3), there is a

Jensen measure μ for b with $\nu \ll \mu$, hence $\mu(E) > 0$, so that

$$\log |\hat{f}(b)| \leq \int \log |f| d\mu = -\infty$$
,

where \hat{f} denotes the Gelfand transform of f. Thus $\hat{f}(b)=0$. Thus $\hat{f}=0$ on P, hence $\hat{f}=0$ on the hull-kernel closure of P in M(A). By hypothesis (2), $\hat{f}=f=0$ on the support of τ , hence $\tau(E)=1$. The result follows.

- (4.2) This result does not imply Glicksberg's result that $\mathcal{R}=\mathcal{O}$ for logmodular algebras. The hypothesis on the support of representing measures fails for any algebra with a one-point part off the Shilov boundary. It would be interesting to know if $\mathcal{R}=\mathcal{O}$ whenever A is hypodirichlet on $X= \coprod (A)$ (cf. (4.4) below).
- (4.3) Let U be an open subset of the Riemann sphere, and let A(U) denote the algebra of all functions continuous on clos U and analytic on U. Suppose A(U) has nonconstant functions in it. The maximal ideal space of A(U) is clos U (Arens' theorem). The Shilov boundary of A(U) is the essential boundary of U, i.e. the set of points a ε bdy U such that a is an essential singularity for some f ε A(U). The algebra A(U) has no completely singular annihilating measures, and representing measures for a point of clos U are always supported on the closure of the part [4]. Thus we obtain the following.
- Corollary. Let A = A(U) on X = \square (A), and suppose that each representing measure for each point a ε clos U is absolutely-continuous with respect to some Jensen measure for a. Then $\mathcal{H} = \mathcal{R} = \mathcal{R}_1 = \mathcal{O}$.

(4.4) Corollary. Suppose A = A(U) is a hypodirichlet algebra

on X = bdy U. Then $\mathcal{H} = \mathcal{R} = \mathcal{R}_1 = \mathcal{O}$ is the family of all closed sets $E \subset X$ which are ergodic for harmonic measure for each component of U.

<u>Proof.</u> If A is a hypodirichlet on X, then $X = \coprod(A)$ and all representing measures on X for a point $a \in M(A)$ are dominated by the (unique) Jensen measure for a [2, p.116]. In case A = A(U), the last corollary yields $\mathcal{H} = \mathcal{O}$. As we noted in the proof of (4.1), a closed set $E \subset X$ belongs to \mathcal{O} if and only if E is ergodic for all representing measures. Thus $E \in \mathcal{O}$ if and only if E is ergodic for all Jensen measures. Since $\log |f|$ is subharmonic on U for each $f \in A(U)$, it follows that the Jensen measure for a point $a \in U$ is in fact the harmonic measure for a on the boundary of the component of a in U. Thus $E \in \mathcal{O}$ if and only if E is ergodic for all these harmonic measures. This completes the proof.

(4.5) Gamelin and Garnett [4] gave fairly explicit necessary and sufficient conditions on U for A(U) to be hypodirichlet.

The fact that $\Re = \Theta$ for hypodirichlet A(U) does not follow from Glicksberg's result on logmodular algebras. Indeed A(U) is logmodular if and only if it is dirichlet.

Corollary (4.3) applies to some non-hypodirichlet A(U), such as the "champagne bubble" algebra $\boxed{2}$, p.22 $\boxed{7}$. This infinitely-connected U is such that harmonic measure dominates all representing measures, and is, as always, a Jensen measure.

(4.6) Generalised Rudin-Carleson Theorem. Let A(U) be hypodirichlet on X = bdy U. Then $\mathcal{G} = \mathcal{G}_1 = \mathcal{G} \cap \mathcal{O}$ is the family of closed sets $E \subset X$ having harmonic measure zero with respect to each component of U.

<u>Proof.</u> Since R = P, it follows that $g = g \cap P$.

Suppose E ε $\mathcal G$. By the last corollary, E is ergodic for all harmonic measures. If there exists a connected component V of U for which E has full harmonic measure, then E contains bdy V, hence $C(bdy\ V) = A|bdy\ V \subset A(V)|bdy\ V \neq C(bdy\ V)$, which is impossible. Thus E has harmonic measure zero for all components of U.

Conversely, if E has harmonic measure zero for all components, then $\mu|E=0$ whenever $\mu\perp A$, by the generalized F. and M. Riesz theorem, hence E ϵ 900 by [2, p.58].

(4.7) <u>Problem</u>. Glicksberg showed [6] that if A|E is closed for each weak-star closed set $E \subset X$, and X = M(A), then A = C(X). In view of Theorem (2.2), this shows that if R = A and X = M(A), then A = C(X). This is one of a body of results which characterise C(X) among its subalgebras in various ways. We may ask whether R = A and X = M(A) force A = C(X), i.e. whether "weak-star closed" may be replaced by "hull-kernel closed" in Glicksberg's result.

Smyth and West [9] asked a related question. They asked (essentially) whether a uniform algebra A on X = M(A), of which all quotients A/I by closed ideals are also uniform algebras, must be C(X). If all quotients are uniform algebras, then $\mathcal{R}_1 = \mathcal{H}$, so a positive answer to the first question implies a positive answer to the second.