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RESTRICTIONS OF UNIFORM ALGEBRAS

Anthony G.O'Farrell

1. The diagram. Let A he a complex uniform algebra on a
compact Hausdorff space X [2, p. 32]. This paper is about the fa-
nily of sets £c< X for which the restriction algebra AJE is uni-
formly closed. For hackground, cf. [1;2;3;5;7;8]. More details of Lo
the results described here will appear in the Procme
Royal Irish Academy,

The alzebra A induces certain families of subsets of X
follows:

,» as

W is the famnily of weak-star closed subsets of X , Tegarding
X as a subset of the aual A~ (the "original' closed sets).

A is the family of A -convex subsets of ¥ , i.e. Ee bif
and only if £ equals t" A -zomver hull of £ (in X J, which is
the set {2 e X:|A@f& f#il,. whrrsy e d} | where | /vIIE denotes
the uniform norm of # on £ .

# is the family of hull-kernel closed subsets of A . i,.,
Fe#if and only if E={a € X: #(a)=0 whenever /€ ke~ £}, where
kerE={feA:#f|E=0} ( £]£ denotes the restrictiu,. f # to £ ).

A is the family of A -convex sets £ such thut £ is closed.
The reason we restrict attention to 4 -convex sets iz that for any
£cX , with 4 -convex hull £, the restriction algebra A4/£ is
closed if and only if AJF is closed.

cﬁ, is the family of 4 ~convex sets £ such that the quotient
A/ker £ is isometric to the restriction algebra A[F , i.e. given
feA and € >0 , there exists g € 4 such that ¢g|F=/]E and
Igl, & el _

J is the family of interpolation sets, i.e. those fc X such
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Restriction Algebras

Anthony G. O'Farrell

Abstract. Let A be a uniform algebra on a compact Hausdorff

space X. We discuss the diagram of inclusions

Sn6 + 3, »

in which 7%/ 1is the family of weak-star closed subsets of X, 4 is
the family of (relatively) A-convex sets, # is the family of (rel-
atively) hull-kernel closed sets, @R is the family of sets E ¢ &
such that the restriction algebra A|E is closed in C(E), 621 is the
family of sets E ¢~ such that A|E is isometric to A/ker E, 0 is
the family of p-sets, 9’ is the family of interpolation sets, i.e.
sets E € “a/ such that A|E = C(E), and ffl - %n 6?1 is the family
of isometric interpolation sets. We discuss the behaviour of these
families under union and intersection. We give a new sufficient
condition for the equality = G’ . This yields a "Rudin-Carleson

theorem" for hypodirichlet algebras of analytic functions.



§1. Introduction.

(1.1)  Let A be a complex uniform algebra on a compact Hausdorff
space X [2, p.3Z]. This paper is about the family of sets E C X
for which the restriction algebra A|E 1is uniformly closed. For

background, cf. [1,2,3,5,7,8].

The algebra A induces certain families of subsets of X, as

follows:

(1) “1J 1is the family of weak-star closed subsets of X, regarding

X as a subset of the dual A* (the "original" closed sets).

(2) 4 is the family of A-convex subsets of X, i.e. E e g if
and only if E equals the A-convex hull of E(in X), which is the set

{aeX: |[f(a)] < IIfHE whenever f ¢ A},

where [[f|[. denotes the uniform norm of f on E.

(3) A s the family of hull-kernel closed subsets of X, i.e.

E e & if and only if
E=1{aeX: f(a) = 0 whenever f ¢ ker E} ,

where

ker E = {f e A : f|E = 0},

where f|E denotes the restriction of f to E.

(4) 62 is the family of A-convex sets E such that A|E is closed.

The reason we restrict attention to A-convex sets is that for any



E < X, with A-convex hull F, the restriction algebra A|E is closed

if and only if A|F is closed. This is proved in (2.2) below.

(5) 021 is the family of A-convex sets E such that the quotient
A/ker E is isometric to the restriction algebra A|E, i.e. given

feAand e >0, there exists g € A such that g|E = f|E and

llly < (1+e)lI£]llg-

(6) 9 s the family of interpolation sets, i.e. those E < X

such that E is weak-star closed and A|E = C(E).

(7) 9 , Is the family of isometric interpolation sets, i.e. those

Eed such that C(E) is isometric to A/ker E.

(8) (P is the family of p-sets in X, i.e. intersections of peak

sets [2, p.56].

(9) é}n @ is the family of p-interpolation sets.

The relationship between these families is expressed in the

following diagram, in which each arrow is an inclusion map.

InP > 9, = F

Y ¥ v

6) —>6{1 _5@_5#_5/&%“1'\/

(1.2) Some of these inclusions are obvious. The inclusion 6:><> C;?i

is due to Glicksberg [§;2, p.58]. It implies the inclusion In 6>—>»fg.



The inclusion R+ {s due to Bernard [1]. The inclusion & » &R
implies the inclusion 9; > 621' We include brief proofs of the

inclusions (> and 9 > ® in (2.4) and (2.5).

(1.3) Each inclusion in the diagram may be proper. We are interested
mainly in the case when X = M(A), the maximal ideal space of A, and
the case when X = LLJ (A), the $ilov boundary of A. In both cases,
each of the inclusions in the diagram may be proper. We give examples

in (2.6) - (2.11).

(1.4) Each of the families InG¢?, ?, A, £ , and W is known to
be an F-topology, i.e. is closed under finite unions and arbitrary
intersections. Clearly, the families % and 91 are directed down-
ward (i.e. closed under subsets), and hence are closed under arbitrary
intersections. In (3.1) and (3.2) we give examples to show that none
of 62, 0?1_, S, E?i need be closed under finite unions, and that

62 and R may fail to be closed under finite intersections. In
(3.3) we show that if X = M(A), E and F are disjoint elements of R s
then E UF e R .

We mention some other positive results. Glicksberg [5, pp.424-425]
noted that E ¢ (° and F ¢ ® imply E U F e R . A similar argument
shows that E M F € 6 also. The family Gaj_is closed under nested

intersection.

(1.5) Consider the problem, under what circumstances equality obtains
between (R or 9 and one of the other families in the diagram.
Apart from the fact that a diagram of inclusions always prompts such

a question, there is a natural reason for studying it: the families C;Z



H, &, W may admit explicit description, so that an equality
permits the explicit description of R or f? . Consider, for instance,
the disc algebra A on the unit circle X. Then @ = 621 = R = K,
and P00 =%, = @, and R=PU{X}. The family ¥ consists of
the closed sets of length zero. These facts are the Luzin-Priva1off
and Rudin-Carleson theorems. They extend to the polydisc [7] and

ball ﬁﬂ in ¢". Glicksberg showed that, in general, 0° is the family
of sets E € "W such that p|E annihilates A whenever the measure p
annihilates A. This yields even more explicit descriptions of @ in
special situations. Thus interest focuses on the equation R =0,
Glicksberg showed that R= 6 if x = LJ (A) and A is Togmodular,
and Bernard obtained the stronger conclusion H- P under the
assumption that A has unique representing measures on X = MWJ (A) and
that M(A) is "bien-partagé" (the representing measure for each point
of each Gleason part P of A is supported on the weak-star closure of

P in M(A)). These results apply to many examples, but they fail to
cover such simple algebras as A(U), where U is an annulus. In (4.1)
we prove a result which yields a "Rudin-Carleson theorem" for A(U)
whenever U is a plane domain bounded by a finite number of closed

curves, and which also covers some infinitely-connected U.



§2. The diagram.

(2.1) Lemma. Let E< X and let AJE be closed. Then

hull ker E equals the A-convex hull of E,

and A|F 1is closed whenever E < F < hull kerE.

Proof. By the open mapping theorem, A|E is closed if and only if
there exists M>0 such that each f ¢ A|E has an extension geA such
that |[g]ly < M|[f[[p . Let A|E be closed, let M be so chosen, and
let E « F < hull ker E. Let f ¢ A. Then f|E has an extension

g € A such that |[g][y < M|[f[|p . Since f =g onE, it follows that

f=gonF, sog extends f[F and ||g||y < M||f|[z. Thus A|F is closed.

In general, hull ker E contains the A-convex hull of E, since # < ..
If A|E is closed, if M is as above, and F = hull ker E, then clearly
Ifllg < M[[f][g for all f e A. Replacing f by f" and taking roots
and Timits we conclude that |[f||F < |Ifllg s so that F is contained in

the A-convex hull of E. This completes the proof.

(2.2) Theorem. Let E < X, and let F be the A-convex hull of E.

Then A|E is closed if and only if A|F is closed.

art
Proof. In view of the Temma, it remains to prove the "if" peintr

Suppose A|F is closed. Choose M>0 such that for each f ¢ A
the function f|F has an extension g € A such that ||g[|X < M|yqu .

Then, since ||f||F < |[fllg » we see that A|E is closed.

(2.3) The above theorem fails if the A-convex hull is replaced by the



hull-kernel closure. Consider, for example, the disc algebra A
on either the unit circle X = LLJ(A) or the closed disc X = M(A).
If E is a closed semicircle, then A|E is not closed, yet

hull ker E = X.

(2.4) Corollary. R < H.

Proof. This is immediate from Lemma (2.1).
(2.5) Corollary. ¥ < OR.

Proof. Let Ee &, and let F be the A-convex hull of E. Then A|F
is isometrically isomorphic to A|E = C(E). If F~E were nonempty,
then C(E) would admit an algebra homomorphism onto €, other than

evaluation at points of E, which is impossible.

(2.6) Example. & # W .

It is easy to see that .8 need not equal ™. It is less
obvious that A& need not equal ~J if X = LLI(A). An example is the
"thumbtack" [8, p.206].

Using Bishop's criterion [2, p.59] it is easy to see that
4 = "/ if and only if each point of X is a p-point (generalized
peak point).

(2.7) Example. A # & . The disc algebra on L/ (A)

(2.8) Example. R ¢+ H .



In (3.1) below we give an example in which there exist
E,F ¢ ( such that EOUF ¢ (R . Since K  is an F-topology, we
must have (R # # .

(2.9) Example. @, # & , hence K #R.

If a and b belong to the same Gleason part of A, and
E={a,b}, thenEe &~ @ . Thus ¥~ & #p whenever X
meets some Gleason part in two or more points. This can occur even
for X = UJ(A). Take, for instance X< € with no interior such

that R(X) # C(X) [2, p.25; p.54; p.146].

(2.10) Example. Png + 91, hence @#Rl.

Take E = {a} , where a is a non p-point on X. An R(X), as

above, gives an example with X = LLI(A).

(2.11) Example. Pn3= 3, = ¢ + R - R -0n K.

The disc algebra.



§3. Unions and intersections.

(3.1) Example. None of % ,, ¥, (X,, & is closed under union.

We shall give an example of E,F € S?l with EUF ¢ R .

Let a, be a sequence of positive numbers, decreasing to zero,
and let rn:>0 be such that the closed discs Dn with centres a, and

radii r, are disjoint. Let X = {0} U #;{ D and let A be the algebra

n >
A(X) of all functions, continuous on X and analytic on int Dn for each
n. For each n, pick bn e int D> bn # as such that the Gleason
distance p(a,,b ) is less than 4" LetE = {0,a,,3,,... } and
F={0,b,,b,5... }. Then, obviously, E and F are isometric
interpolation sets, and A|E UF 1is dense in C(E UF). Suppose

EUF e ®&. Then AJEUF = C(EUF). But consider the function

f e C(EUF), given by f(a ) = 0, f(b ) = 27", £(0) =0. IfgeA
and glEUF = f, then

27" = Jg(a,) - ab)l < 47"glly
for each n, which is impossible.
This A is generated by one element.
By replacing the discs Dn by Swiss cheeses, we obtain an
example in which X = UJ(A).
(3.2) Example. Neither 6?1 nor 6 is closed under intersection.

Let E and F be disjoint copies of the set X constructed in
(3.1), and let X be the space obtained by identifying the 0 of E with
the 0 of F, the a, of E with the a, of F, and the bn of E with the bn

of F, for each n. Let A be the algebra of functions f € C(X) such



that f|E ¢ A(E) and f|F € A(F). Then E and F belong to 621,
because A|E = A(E) and A{F = A(F), as is easily seen. But A|[ENF
is A(E)|JENF, and is not closed, as we saw in (3.1). Thus ENF ¢ R.

(3.3) Theorem. Let X = M(A) and let E,F e & , with ENF = 0.

Then EUF & 02 .

Proof. We employ the following characterisation of R , due to
Glicksberg [5]. Let E ¢ & . Then A|E is closed if and only if

there exists k = «(E) > 0 such that

A N
distEJ,(AlE)] < Kdistvlf,A:I

4
whenever u is a measure supported on E, where A denotes the space of
L
measures on X which annihilate A, and (A|E) denotes the space of measures

on E which annihilate A.
Let «(E) and «(F) be chosen as above.

Since E and F are disjoint and hull-kernel closed, the ideal
ker E + ker F is contained in no maximal ideal. Since A is a Banach

algebra,
A = ker E + ker F.

Choose f ¢ ker E and g ¢ ker F such that f+g = 1.

Let p be a measure supported on E (U F. Then u = fu + gu, fu
is supported on F and gu is supported on E. There exist annihilating

measures ¢ and T, supported on E and F, respectively, such that

lo-gull < «(E)dist EU,A*J,

lle-full < «(F) dist F“’Arl'
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Now clearly dist ]}u, ] < [|f[| dist [, :[ , since fA ¢ A
whenever A ¢ A, and similarly d1stl:gu, :I < lglly dist ]:, :I
Thus

I
dist |u,(A|EUF) ]

s |lw—o—1||

< {x®)llglly + <(FI[IFlly} dist E“"L]'

Thus, by Glicksberg's characterisation, EUF ¢ R.
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§4. Equality between different classes.

(4.1) Theorem. Let A be a uniform algebra on X < M(A).

Suppose (1) A has no completely-singular

annihilating measures on X, (2) for each

a € M(A), each representing measure for a

on X is supported on the hull-kernel cliosure

in M(A) of the Gleason part of a, and (3)

for each a € M(A) and each representing

measure v for a on X, there exists a Jensen

measure u for a on X, with v < < p. Then

-0,

Proof. Glicksberg [5;2, p.58] showed that E e (° if and only if

u|E e A" whenever y e A~ Bernard [1, p.377] deduced that if E e &,
then E is ergodic for all representing measures for A on X, in the
sense that if u is such a measure, then u(E) is 0 or 1. If A has

no completely-singular annihilating measures, then by the general

F. and M. Riesz theorem [2, p.45, (7.11]], if E is ergodic for all
representing measures, then E ¢ G° . Thus in the present situation,
@ is the family of sets which are ergodic for all representing

measures.

Suppose E ¢ . We wish to show that E ¢ 62 . It suffices
to take E = f_l(O) for some f ¢ A. Let T be a representing measure
for a point a € M(A). We wish to show that t(E) = 0 or 1. Suppose
T(E) > 0. Let P « M(A) be the Gleason part of a, and let b be any

point of P. Then b has a representing measure v on X such that t<«wv

[2, p.143,(1.2]], hence v(E) > 0. By hypothesis (3), there is a
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Jensen measure u for b with v« u , hence u(E) > 0, so that
Tog|f(b)| < f]og|f|du = -,

where f denotes the Gelfand transform of f. Thus %(b) = 0. Thus f=0
on P, hence f = 0 on the hull-kernel closure of P in M(A). By
hypothesis (2), f=f=0on the support of t, hence t(E) = 1. The

result follows.

(4.2) This result does not imply Glicksberg's result that R =6

for logmodular algebras. The hypothesis on the support of representing
measures fails for any algebra with a one-point part off the Shilov
boundary. It would be interesting to know if R = 6 whenever A is
hypodirichlet on X = LLI(A) (cf. (4.4) below).

(4.3) Let U be an open subset of the Riemann sphere, and let A(U)
denote the algebra of all functions continuous on clos U and analytic
on U. Suppose A(U) has nonconstant functions in it. The maximal ideal
space of A(U) is clos U (Arens' theorem). The Shilov boundary of

A(U) is the essential boundary of U, i.e. the set of points a ¢ bdy U

such that a is an essential singularity for some f ¢ A(U). The algebra
A(U) has no>c0mp1ete1y singular annihilating measures, and representing
measures for a point of clos U are always supported on the closure of

the part Bﬂ. Thus we obtain the following.

Corollary. Let A = A(U) on X =1WJ(A), and suppose that each

representing measure for each point a ¢ clos U is

absolutely-continuous with respect to some Jensen

measure for a. Then H = (R = 621 = 6.
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(4.4) Corollary. Suppose A = A(U) is a hypodirichlet algebra
onX=>bdyU. Then H =R = & =@

is the family of all closed sets E < X which

are ergodic for harmonic measure for each

component of U.

Proof. If A is a hypodirichlet on X, then X = LuU(A) and all
representing measures on X for a point a ¢ M(A) are dominated by the
(unique) Jensen measure for a [2, p.116]. In case A = A(U), the last
corollary yields H = G2 . As we noted in the proof of (4.1), a closed
set E < X belongs to G2 if and only if E is ergodic for all representing
measures. Thus E ¢ 6 if and only if E is ergodic for all Jensen
measures. Since log|f| is subharmonic on U for each f ¢ A(U), it
follows that the Jensen measure for a point a ¢ U is in fact the
harmonic measure for a on the boundary of the component of a in U. Thus
Ee 024f and only if E is ergodic for all these harmonic measures.

This completes the proof.

(4.5) Gamelin and Garnett Eﬂ gave fairly explicit necessary and

sufficient conditions on U for A(U) to be hypodirichlet.

The fact that GR = 6° for hypodirichlet A(U) does not
follow from Glicksberg's result on Togmodular algebras. Indeed A(U)

is logmodular if and only if it is dirichlet.

Coroliary (4.3) applies to some non-hypodirichlet A(U), such
as the "champagne bubble" algebra [2, p.227]. This infinitely-connected
U is such that harmonic measure dominates all representing measures,

and is, as always, a Jensen measure.
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(4.6) Generalised Rudin-Carleson Theorem. Let A(U) be

hypodirichlet on X = bdy U. Then Y- fyl -In 6’

is the family of closed sets E < X having harmonic

measure zero with respect to each component of U.

Proof. Since 62; 63, it follows that f? = f?lﬁ 63.

Suppose E ¢ S . By the last corollary, E is ergodic for all
harmonic measures. If there exists a connected component V of U for
which E has full harmonic measure, then E contains bdy V, hence
C(bdy V) = Albdy V <= A(V)|bdy V # C(bdy V), which is impossible.

Thus E has harmonic measure zero for all components of U.

Conversely, if E has harmonic measure zero for all components,
then u|E = 0 whenever u L A, by the generalized F. and M. Riesz theorem,

hence E ¢ ¥n(by [2, p.58].

(4.7) Problem. Glicksberg showed [6] that if A|E is closed for each

weak-star closed set E <« X, and X = M(A), then A = C(X). In view of

Theorem (2.2), this shows that if (R = & and X = M(A), then A = C(X).
This is one of a body of results which characterise C(X) among its
subalgebras in various ways. We may ask whether 6= % and X = M(A)
force A = C(X), i.e. whether "weak-star closed" may be replaced by

"huli-kernel closed" in Glicksberg's result.

Smyth and West Eﬂ asked a related question. They asked
(essentially) whether a uniform algebra A on X = M(A), of which all
quotients A/I by closed ideals are also uniform algebras, must be C(X).
If all quotients are uniform algebras, then 021 =H, so a positive

answer to the first question implies a positive answer to the second.



