RESTRICTION ALGEBRAS

By A. G. O'FARRELL, M.R.I.A.

Department of Mathematics, Maynooth College

Received 24 February 1982. Read 1 April 1982. Published 23 July 1982.

ABSTRACT

Let A be a uniform algebra on a compact Hausdorff space X. We discuss the family of sets $E \subset X$ for which the restriction algebra $A \mid E$ is uniformly closed. Without loss of generality, it suffices to consider A-convex sets E. For a moderately large family of algebras we characterise the A-convex sets E such that $A \mid E$ is closed.

1. Introduction

(1.1). Let A be a complex uniform algebra on a compact Hausdorff space X [2, p.32]. This paper is about the family of sets $E \subset X$ for which the restriction algebra $A \mid E$ is uniformly closed. For background, see [1, 2, 3, 5, 6, 7, 8].

Let E be a subset of X. The A-convex hull of E (in X) is the set

$${a \in X : |f(a)| \leqslant ||f||_E \text{ whenever } f \in A},$$

where $||f||_E$ denotes the uniform norm on E. We say that E is A-convex if it equals its A-convex hull. The kernel of E is the ideal

$$\ker E = \{ f \in A : f | E = 0 \}.$$

The (relative) hull-kernel closure of E is the set

hull ker
$$E = \{a \in X : f(a) = 0 \text{ whenever } f \in \ker E\}.$$

(1.2) Lemma. Let $E \subset X$ and let $A \mid E$ be closed. Then hull ker E equals the A-convex hull of E, and $A \mid F$ is closed whenever $E \subset F \subset$ hull ker E.

PROOF. By the open mapping theorem, $A \mid E$ is closed if and only if there exists M > 0 such that each $f \in A \mid E$ has an extension $g \in A$ such that $\parallel g \parallel_X \leqslant M \parallel f \parallel_E$. Let $A \mid E$ be closed, let M be so chosen, and let $E \subset F \subset \text{hull ker } E$. Let $f \in A$. Then $f \mid E$ has an extension $g \in A$ such that $\parallel g \parallel_X \leqslant M \parallel f \parallel_E$. Since f = g on E, it follows that f = g on F, so g extends $f \mid F$ and $\parallel g \parallel_X \leqslant M \parallel f \parallel_F$. Thus $A \mid F$ is closed.

In general, hull ker E contains the A-convex hull of E.

If $A \mid E$ is closed, if M is as above, and F = hull ker E, then clearly $||f||_F \leq M ||f||_E$ for all $f \in A$. Replacing f by f^n and taking roots and limits we conclude that $||f||_F \leq ||f||_E$, so that F is contained in A-convex hull of E. This completes the proof.

(1.3) Corollary. Let $E \subset X$, and let F be the A-convex hull of E. Then $A \mid E$ is closed if and only if $A \mid F$ is closed.

Proc. R. Ir. Acad. Vol 82A, No. 1, 105 - 108, (1982)

(1.4). In view of this result, we focus on the family

 $\mathcal{M} = \{E \subset X : E \text{ is } A\text{-convex and } A \mid E \text{ is closed}\}.$

We would like to give 'explicit' conditions for $E \in \mathcal{R}$. We would also like to find any structure in the family \mathcal{R} . We are particularly interested in the cases when X = M(A), the maximal ideal space of A, and when $X = \mathfrak{U}(A)$, the Shilov boundary of A.

Glicksberg [5] showed that each p-set belongs to \mathcal{M} . He showed the converse in case A is logmodular and $X = \operatorname{ul}(A)$. Bernard [1] showed the converse in case A has unique representing measures on $X = \operatorname{ul}(A)$ and M(A) is 'bien-partagé' (the representing measure for each point of each Gleason part P of A is supported on the weak-star closure of P in M(A)). These results apply to many examples, but they fail to cover such simple algebras as A(U), where U is an annulus. In (2.1) we prove a result which covers A(U) whenever U is a plane domain bounded by a finite number of closed curves, and which also covers some infinitely-connected U.

As regards structure, examples show that the family \mathcal{H} is not in general closed under unions or intersections. We do however, have the following.

(1.5) Theorem. Let X = M(A), and suppose E and F are disjoint A-convex sets such that $A \mid E$ and $A \mid F$ are closed. Then $A \mid (E \cup F)$ is closed.

Observe that E and F are hulls, by Lemma (1.2), so that $E \cup F$ is a hull. By the Shilov idempotent theorem, there is a function $h \in A$ such that h = 0 on E while h = 1 on F. If now $f \in A \mid F \cup E$, set $f_1 = f \mid E$ and $f_2 = f \mid F$, and let $F_1, F_2 \in A$ be extensions of f_1 and f_2 , respectively, such that $||F_j|| \le c ||f_j||$. Then $F = hF_2 + (1 - h)F_1$ extends f and $||F|| \le c(||h|| + ||1 - h||) ||f||$.

2. Main result

(2.1) Theorem. Let A be a uniform algebra on $X \subset M(A)$. Suppose (1) A has no completely-singular annihilating measures on X, (2) for each $a \in M(A)$, each representing measure for a on X is supported on the hull-kernel closure in M(A) of the Gleason part of a, and (3) for each $a \in M(A)$ and each representing measure v for a on v, there exists a Jensen measure v for v on v, with $v \ll v$. Let v be v convex. Then v is closed if and only if v if v or v for each Jensen measure v on v.

PROOF. Glicksberg [5; 2, p. 58] showed that a closed set E is a p-set if and only if $\mu \mid E \in A^{\perp}$ whenever $\mu \in A^{\perp}$. Bernard [1, p. 377] deduced that if E is a p-set, then E is ergodic for all representing measures for A on X, in the sense that if μ is such a measure, then $\mu(E)$ is 0 or 1. If A has no completely-singular annihilating measures, then by the general F. and M. Riesz theorem [2, p.45, (7.11)], if E is ergodic for all representing measures, then E is a P-set. Thus in the present situation, E is a P-set if and only if E is ergodic for all representing measures, or equivalently for all Jensen measures. The 'if' part of the result is now clear.

Suppose E is a hull. We wish to show that E is a p-set. It suffices to take $E = f^{-1}(0)$ for some $f \in A$. Let τ be a representing measure for a point $a \in M(A)$. We wish to show that $\tau(E) = 0$ or 1. Suppose $\tau(E) > 0$. Let $P \subset M(A)$ be the Gleason part of a, and let b be any point of P. Then b has a representing measure v on X such that $\tau \ll v$ [2, p. 143,

(1.2)], hence $\nu(E) > 0$. By hypothesis (3), there is a Jensen measure μ for b with $\nu \ll \mu$, hence $\mu(E) > 0$, so that

$$\log |f(b)| \leqslant \int \log |f| \, d\mu = -\infty,$$

where \hat{f} denotes the Gelfand transform of f. Thus $\hat{f}(b) = 0$. Thus $\hat{f} = 0$ on f, hence f = 0 on the hull-kernel closure of f in f

- (2.2) This result does not imply Glicksberg's result for logmodular algebras. The hypothesis on the support of representing measures fails for any algebra with a one-point part off the Shilov boundary. It would be interesting to know if each $E \in \mathcal{A}$ is a p-set whenever A is hypodirichlet on $X = \mathfrak{ul}(A)$ (cf. (2.4) below).
- (2.3) Let U be an open subset of the Riemann sphere, and let A(U) denote the algebra of all functions continuous on clos U and analytic on U. Suppose A(U) has nonconstant functions in it. The maximal ideal space of A(U) is clos U (Arens' theorem). The Shilov boundary of A(U) is the essential boundary of U, i.e. the set of points $u \in bdy U$ such that u is an essential singularity for some $u \in A(U)$. The algebra u0 has no completely-singular annihilating measures, and representing measures for a point of clos u0 are always supported on the closure of the part [4]. Thus we obtain the following.

Corollary. Let A = A(U) on X = u(A), and suppose that each representing measure for each point $a \in clos\ U$ is absolutely-continuous with respect to some Jensen measure for a. Let $E \subset X$ be closed. Then $A \mid E$ is closed if and only if E is ergodic for all Jensen measures on X.

Note that in this case all closed subsets of X are A-convex.

(2.4). If A is hypodirichlet on X, then X = u(A) and all representing measures on X for a point $a \in M(A)$ are dominated by the (unique) Jensen measure for a [2, p. 116]. Thus the corollary applies to all hypodirichlet A(U). For such A(U), the Jensen measure for $a \in U$ is in fact the harmonic measure for a on the boundary of the component of a. Thus $A(U) \mid E$ is closed if and only if E is ergodic for all these harmonic measures.

Gamelin and Garnett [4] gave fairly explicit necessary and sufficient conditions on U for A(U) to be hypodirichlet.

As an example, if U is bounded by n smooth curves, then A(U) is hypodirichlet, and each harmonic measure is mutually absolutely-continuous with respect to arc length on its support.

The fact that each $E \in \mathcal{R}$ is a p-set for hypodirichlet A(U) does not follow from Glicksberg's result on logmodular algebras. Indeed A(U) is logmodular if and only if it is dirichlet.

Corollary (2.3) applies to some non-hypodirichlet A(U), for instance, certain 'champagne bubble' algebras [2, p. 227].

REFERENCES

- [1] Bernard, A. 1967 Caractérisations de certaines parties d'un espace compact muni d'un espace vectoriel ou d'une algèbre de fonctions continues. Ann. Inst. Fourier 17, 359-82.
- [2] GAMELIN, T. W. 1969 Uniform Algebras. Englewood Cliffs. Prentice Hall.
- [3] Gamelin, T. W. 1964 Restrictions of subspaces of C(X). Trans. Am. math. Soc. 112, 278-86.
- [4] GAMELIN, T. W. and GARNETT, J. 1971 Pointwise bounded approximation and Dirichlet algebras. J. funct. Anal. 8, 360-404.
- [5] GLICKSBERG, I 1962 Measures orthogonal to algebras and sets of antisymmetry. Trans. Am. math. Soc. 105, 415-35.
- [6] GLICKSBERG, I. 1963 Function algebras with closed restrictions. Proc. Am. math. Soc. 14, 158-61.
- [7] RUDIN, W. 1969 Function Theory in Polydiscs. New York. Benjamin.
 [8] RUDIN, W. 1980 Function Theory in the Unit Ball of Cⁿ. New York. Springer.