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The measures on a compact Hausdorff space X orthogonal to the sum 4, + 4, of
two subalgebras of Cp(X), the real-valued continuous functions on X, are described.
From this description, a geometric condition equivalent to the density of
Clx,) + C(x,) in Cg(X) is obtained, where X = R’ and where C(x,) denotes the
continuous functions depending only on the jth coordinate function.

We are interested in finite sums of algebras of real-valued continuous
functions. For example, if X © R" is compact we seek a description of the
linear space

Clx,) + -+ + Clx,)

as a subset of Cg(X), the real-valued continuous functions on X. Here
Xy X, denote the coordinate functions on R* and C(x;) the space of real-
valued continuous functions that depend only on the jth coordinate function.
Problems connected with this linear space have arisen in a number of
contexts.

Perhaps the most celebrated result on sums of algebras is Kolmogorov's
solution of Hilbert’s thirteenth problem [14). Expanding on the solution by
Arnold [1, 2}, Kolmogorov embedded the unit cube of R” into the unit cube
in R?**1, n» 2, in such a way that on the image all continuous functions
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354 MARSHALL AND O'FARRELL

belong to the space C{¥,) + --- + C(Vapy i) WheTe Vi ¥y, are the coor-
dinate functions in R2"*', and each y; in turn is in C(x,}+ - + Clx,).
Writing

"
g

yi= N e ks, J= 1. 2n+ 1
k=1

it has been observed that each @, ; is monotonic and Lipschitz continuous.
Kahane |13] proved that aimost any choice of monotonic, Lipschitz ¢, ; will
work. Vitushkin |23, 24], (see also Henkin |12]), however, proved that {g, ;}
cannot be continuously differentiable. See Vitushkin [22], for an excellent
survey on this subject.

We are looking at this problem from the point of view of functional
analysis. What geometric conditions on the image X of the unit cube of R”
guarantee that the linear space C(y )+ -~ + C{ V) is uniformly dense in
Cg{X)? The closure of C(y,)+ - + C(¥,,.,) can, of course, be described
in terms of the measures on X orthogonal to this space. While we cannot
give a complete answer to this problem, we can describe the measures on a
compact set X < [R? orthogonal to C(x,) + Cfx,) (see Theorem 2). From
this description, we obtain a geometric condition equivalent to the density of
C(x,) + C{x,). Earlier [16] we described the measures orthogonal to
C(x,) + C(x,) provided orbits of X were closed. Havinson [11] used this
description to characterize the compact sets X c R? with

Clx,} + Clxy) = CplX).

A similar necessary and sufficient condition was obtained by Sternfeld |21,
who also obtained a necessary condition for C(x,)+ - + C(x,) to equal
Cr(X). Sproston and Strauss [20] have obtained a sufficient, but not
necessary, condition for C(x,) + -++ + C(x,) to equal Cr(X)

The problem of approximating by elements of a sum of algebras has arisen
in other contexts. Buck |5] studied the classical functional equation: Given
k, B e Chlo, 11, [kl < LY Bl < 1, for which u € Cg|0, 1] does there exist
@€ Cyl0, 1] such that g(x)=k(x) @(B(x)) + u(x)? The solution of this
problem when ||k |l,, < 1 is classical and follows from a standard fixed-point
theorem. The case when k = 1 is central to the study of when ki, =1 (see
Kuczma |15]). Buck proved that the set of all 4, for which there is a ¢ €
Cgl0, 1] with

@(x) = @(Blx}) + ulx), (1
is dense in {u € Cgl0. 1]:u(x)=0 whenever f{x)=x] if and only if
C(x,) + C{x,) is dense in Cg(K). where K = {{x,,X;): x, = X, or X, =[f(x,).

0L x, <t} Corollary 2 gives a geometric means of deciding when
C{x,) + Clx,} is dense in Cg(K}).
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This type of approximation has also arisen, for example, in connection
with the numerical solution of certain elliptic p.d.e. boundary value
problems, e.g., Bank |3], the tabulation of functions of several variables, e.g.,
Diliberto and Straus [6], inner derivations on a C* aigebra, e.g., Sproston
119], and dimension theory, e.g., Sternfeld [21].

Approximation by polynomials in the complex variable x, + ix, usually
deals with the topological and metric character of a set X < K !, However,
the type of approximation we consider is more geometric in nature. For
example, if X is the six point set {a, = (0,0), a,=(1,0), a; = (1.2}, a, =
(2,2), a;=(2, 1), ag= (0, 1)}, then C(x,)+ Clx,) is not dense in C{X).
Indeed, if &, denotes point mass ata, the measure d, —&,, + &, — 9, +
d,,— d,, has zero mass on each vertical and horizontal line and hence is
orthogonal to C(x,)+ C(x,). However, if we rotate our set slightly, the
function x, will be one-to-one and hence C(x,)= Cx(X). Consequently, a
simple rotation drastically alters the answer to our density problem.

There are two ideas in the proof of our main result, Theorem 2. We call
them the ergodic method and the stochastic method. For clarity of exposition
we discuss in Section 2 a special case (where we obtain more information) in
which the ergodic method alone suffices. In Section 3, we then combine this
method with the stochastic method to prove our result. Essentially our
approach is dynamical. A norm | annihilating measure for Cl(x,}+ C{x,)
determines a discrete stochastic “flow” on X with two-dimensional “‘time,”
where the generators of the dynamical semigroup do not commute. The

“measure is extreme if and only if the flow is ergodic, in a reasonable sense.

This is equivalent to the ergodicity of a single one-parameter subflow. In
Section | we state our main definitions and theorem. In Section4 we
generalize our results to the sum of two subaigebras, 4, + 4,, contained in
Cp(X), where X is a compact Hausdorfl space. Finally we indicate the
difficulties with the sum of more than two algebras.

1. BoLTS OF LIGHTNING

We begin with a definition. Let n,{x,, x,) = x, and 7,(x,, x,) = x, denote
the coordinate projections inR°. A bolt of lightning is a sequence
(@, @y, 4a;,..) of points in R with either 7,{(a,, ,)=7,(a,,) and 7,(a,,) =
Tal@y e ) for all n=1,2,3,.., ot 7#,(a,, ,)=mia,,) and =(a,,)=
7 (@, i), for all m=1,2,3..... The first case we will call a typeI bolt and
the second a typell bolt. A finite lightning bolt (a,....a,) with @, #a,,,.
k= le..n—1, and a,=a, is said to be a closed bolt. These objects have
appeared, independently, in a number of papers, e.g., |1, 6, 8, 16-18} with
several different names. The term bolt of lighting is the most common and
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problem |1, 2]. We define an equivalence relation on a compact subset X of
R? by: a ~ b if and only if a and b belong to some (finite} lightning bolt
contained in X. We call the equivalence classes orbits. Earlier |16], we
proved the foliowing resuit:

TueoreM 1. If X is a compact subset of R with all its orbits closed,
then C(x,)+ C(x,) is dense in Ce(X) if and only if X contains no closed
lightning bolt.

Boits are explicit objects and give geometric means of deciding if C{x,) +
C(x,) is dense. For example, if X is the set {(0,0), (0, 1), (~1, 1), (=1, =)
G, -1, &4, (=4 1), (=5 —4)» (§ —3)-- 1, then the theorem shows Clx) +
C(x,) is dense. If X consists of three line segments, sufficiently long, then X
contains a bolt with 6 distinct points and hence C(x,} + C{x,) is not dense.
However, if X consists of two paraliel line segments, not parallel to a coor-
dinate axis, then the theorem shows C(x,)+ C(x;) is dense. A more
nontrivia! example was constructed by Havinson [10] in his study of best
approximation by elements of C(x,) + C(x,). One version of his example can
be described as follows. The set X will be a limit of sets X,. Let X, consist of
4 disjoint line segments L,, L,, Ly, L, with slope 1 such that 7z,(L,)=
m (L), (L) =m(L) mo(Ly) = 7o(Ls)s and m,(L,) = 7ms(L). To construct
X, from X,_,, rotate one segment in X, _, 90° about its center, then remove
the middle one-third from each line segment. Clearly X, has 4 - 2" line
segments and every orbit in X, consists of 4 - 2"=! points, one in each line
segment. Hence all orbits in X are dense, so the theorem above does not
apply. There are no closed bolts, but C(x,) + C(x,) is not dense. Indeed, on
X, we can construct a measurc 4, orthogonal to C(x,) + C(x,) by placing
linear measure or (—1) times linear measure on each segment, normalized to
have total variation 1. We can easily do this so that the sign of g, on a line
segment L is the is the same sign as u,,, on the two line segments in X,
formed from L. If ¢ is a weak* cluster point of {,}, then u is a nontrivial
measure on X orthogonal to C(x,) + C(x,).

The idea behind the proof of Theorem 1 is that each closed bolt (a, ..., a,)
in X determines a measure d, — &,, + - + (=1)"d, _, which is orthogonal
to C(x,) + C(x,). On the other hand, if ¢ is an extreme point of the unit ball
of the measures orthogonal to C(x,) + C(x,), then g is supported on a single
orbit, since the orbits are closed. Out of this orbit we construct a closed
lightning bolt. The curious part is that alternating-point-mass measure
associated with this bolt does not have to be used in the measure 4. This
follows from Proposition 1.

Let (C(x,) + C(x,))4 denote the measures on X orthogonal to C(x,)+
C(x,) and let Exty(ball(C(x,}+ C(x,))") denote the extreme points of the
unit ball of (C(x,) + C(x,))x-
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PROPOSITION 1. Suppose X is a compact subset of the unit square S in
R? and suppose p € Ext(ball(C(x,) + C(x,))*). Then y € Extg(ball(C(x,) +

Cle ).

Proof. Let u be supported on X and orthogonal to C{x,) + C{x,) with
lleli = L. If 4 & Extg(ball(Clx,) + C(x,))%), then

u=av+fi,

where 0 <a, B< 1, a+f=1, and », A€ ball{(C(x,)+ C(x,));. Since the
restrictions of » and A to X must have norm 1, they must be supported on X.
Thus 4 & Ext,(ball(C(x,) + C(x,))*)-

In particular, we may take X to be Havinson’s example described above.
Then, as in the proof of Theorem 1, each € Exty(ball(C(x,) + C(x,))")
determines a closed lightning bolt in S, yet # is singular to the measure deter-
mined by this bolt. The bolt, in fact, does not even lie in the support of u.
Hereafter we will fix a compact set X and all measures and bolts will be
carried by X.

If b={(a,,a,,da,,..) is an infinitely long bolt of lightning, let 4, y=
(B, = 8, + -+ (=1)"*" 8, )/n. We say a measure » is generated by the
bolt b if &, , converges {weak*) to g In other words,

lim [ £ duyp=[ /o

H=00

for all f € CA(X).

THEOREM 2. Each u € Ext(ball(C(x,)+ C(x,))") is generated by some
bolt in X.

Clearly if ¢ is a weak* cluster point of {4, ,} for some bolt b, then 4 €
{C(x,) + C(x,))* By the Krein—Milman theorem it is easy to deduce

CoroLLARY 1. C(x,)+ C(x,) is dense in Cg(X) if and only i u,,
converges to 0 (weak-*) for each boit b.

Corollary 1 gives, for example, a geometric method for deciding if density
occurs in the problem mentioned below (1), in the following sense. If U is an
open set in R%, you can see how frequently the even numbered vertices in a
bolt return to U, and hence if there is a nontrivial weak™ cluster-point of g, 4.

COROLLARY 2. Iff € Cg(X), then

JE Y N T OV R I e e 51:... LN I r F s A PR TR B L.J-i
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Diliberto and Straus |6] proved a version of Corollary 2 in the special case
when X is the unit square in %, in connection with a problem posed by the
RAND Corporation. Their version has “max” replaced by “sup.” The proof
in [6] requires, also. that the functions glx,) = j(max,, f(x,,x,) +
min,, f(x,,X,)) and  h(x;)= 3(max,, f(x,,X,) + min, f{x,,x,)) be
continuous for all /€ Cg(X). This is not aiways true for compact sets
X < R?, as is the case in the example immediately following the statement of
Theorem 1. The difficulty arises when X is not a product set. Overdeck [18]
proved Corollary 2 when X is a certain kind of Jordan curve, Havinson |10}
proved it for arbitrary compact sets X c R? with the added hypothesis that f
has a closest function in C(x,) + C(x,). We can modify Havinson's example,
described above, to show that it is possible for C(x,) + C(x;) to not be dense
in Cp(X) and yet there is an f € Cp(X) that does not have a closest function
in C(x,) + C(x,). We simply begin with the 4 line segments in X,, with L,
and L, meeting at one point x,. Arrange all rotations in the construction of
each X, to involve only segments outside some small neighborhood of x,. By
Havinson’s theorem |[10], each f € Cg(X) which is not in C(x,) + C(x,),
does not have a closest function in C(x,) + C{x,). We conclude that our
corollary cannot be deduced from Havinson’s theorem.

We include one final point of clarification. Of course if u € (Clx,}+
C(x,))% ||| =1 and f € Cg(X), one can choose rational numbers r, and
z, € X such that

[rau= X ruen) <c

Repeating each f(z,) as many times as necessary, we may suppose r, =
+1/N. However, one cannot assume, a priori, that N r.glz,)=0 for all
g € C(x,) + C(x,) or even that {z,} are the vertices of a bolt. This is the gap
in the proof in Golomb [9]. (We mention this because it has also been cited

as a proof elsewhere in the literature.)

2. THE ErGODIC METHOD

The special case we begin with is the “deterministic case.” We say
X < R? has small fibers if 7; '(7,(a)) consists of at most two points for all
a € X and j = 1, 2. The example due to Havinson, described above, has small
fibers. We define two bijections ¢; on X by ¢la)=5h if n;(a)=m,b) and
a =+ b, or if 17 (n;{a)) = {a}, then ¢ (a) = a. These maps “switch™ the points
in each fiber. They map X one-to-one and onto X although they might not be
continuous.
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Lemma 1. Each ¢; is a Borel map.

Progf. Without loss of generality we assume 9 =¢, and m=mx,. Let
X,=la€eX:|la—b|>1/n for some b€ X with n(a)=n(h)l. Since = is
continuous and X is compact, X, is closed. Let ¢, (a)=b if a € X, and
n(a) = n(b) with a+ b and let ¢ (a)=ea if a € X\X,. Now if E is an open
set in X and diameter E < 1/2n, then

9, (E)= (X, NE Ma  (n(E))) U (E N (XWX,

where E¢ is the complement of the closure of E. We conclude ¢, is Borel and
since p(x) = lim,_, . @,(x), ¢ is also Borel,

Let .#(X) = C{X)* denote the space of regular Borel measures on X, For
a Borel function y, mapping X into %' or F? and a measure g € #(X) we
define wu €.#(X) by

v (E) = uly " HE))

for all Borel sets E < w(X). Obviously 4 € (C(x,) + C{x,))" if and only if
(9)utt = —ut for j=1 and 2. For a positive measure u €.4#(X) and a Bore!
map v of X into X, we say that v is g-ergodic if

(a) w,p=up and
{(b) if £ is Borel and w(E)c E, then y(E)=0 or g(E) = u(X).

In other words w, preserves 4 and the only  invariant sets either support ¢
or are gnull. We let T=g,0¢,. Note that if z € (C(x,) + C(x,))*, then
T, u=p.

LeMMa 2. If u € ball{C(x,) + C(x,))*, then u is extreme (in this set) if
and only i T is u,-ergodic, where y=yp, —y_ is the Haar decomposition

of 1.

Proof.  Suppose u is extreme. Since (¢;) 4, =p_ and (@) 4_ =p,, we
conclude T u, =u, and T ,u_ =p . Suppose T is not g, ergodic. Then
there exist disjoint T-invariant Borel sets E and, F of positive #, measure
with X' = E‘J F. Indeed, we can take E, Borel with T(E,)c E, and 0 <
g E)<u (X) Let E=lacX:T'a€ E, for somen} =), ,T "E)), a
Borel set. Since T, u =g and since T™"(E) < T-""™NE), u, (Ey=u,(E,)
Let F=X\E.

Let A, =g, |, and v, =g |, be the restriction measures. Define A =
(@ ud,, vo=(p)pv,, A=A, —4i_,and v=v_—v_. Since T, A, =4,
and T,v, =v,, a short computation shows (¢;) (A)=—4 and (9;) v =—v
for j=1, 2, and g=A4A 4 v Thus 4, v€ (Clx,) + C(x,)), and | =|uj =
2fip =20+ 2w, | = DAl + V]l So we may write = 2] A/jiA]) +
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Conversely suppose T is u -ergodic. Suppose 4 is not extreme, and let 4 =
ah + (1 —a), where 0<a <1, A#v and 4, v€(C(x,)+ Clx,))5 A=
vl =1. Clearly g4, =aA, + (1 —a)v, and {4, ||=fv,]=3 Also A, and
v, must be absolutely continuous with respect to ¢ and hence there exists
nonnegative functions £, and g, in L'(u, ) such that

Av=r i, and Vo= 8 4,

so that af, + (1 —a)g, =1, #, ae. Since T preserves 4, and v, , we have

SreT=f, and g,°oT=g, ae du,.

Let E={a€X: f.(a)= g.(a)}. If g (E) > O, then since E is T-invariant, it
has full measure and we conclude A, =v,. Thus A_=(¢).A4, =
(@)gv, =v_, contradicting 1=v. We conclude ¢, ,(E)=0. A similar
argument shows exactly one of the sets {a€X:[f(a)> g, (@)}, x:
F+(a) < g.(a)} has full 4, measure. Without loss of generality, suppose that
Sf.(@)> g, (a)ae du_ . Then

%:jldﬂ+=aJ’(f+_'g+)dﬂ+ +Jg+d#+ >J’1dV+:%-

This contradiction shows g is extreme.
The small fibers assumption implies that there are at most two boits
starting at each point of X, a type 1 bolt and a type IT bolt.

THEOREM 3. Suppose X has small fibers and then u€ .#(X). p€
Ext(ball{C(x,} + C(x,))*) if and only if for u, almost all a € X, each bolt
starting at a generates u.

Of course, by symmetry 4_ almost all points initiate a bolt generating —#
if ¢ is extreme, and conversely. We remark that it is not necessarily the case
that all bolts generate . The point X, in the modification of Havison’s
example given after Corollary 2 has only the trivial bolt {x,} beginning at x,.

Proof. Suppose g is extreme. Then T is u. ergodic by Lemma 2. By
BirkhofT’s ergodic theorem, e.g. [25], for each f € Cx(X)

n

. 1
lm — 3 f(T*a)=2 ] fdu, 3)

n—=o0 k=1

for u, almost all a € X. Since Cg(X) is separable, we can select a set G of
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full ¢, measure such that (3) holds for all 2 € G and all g in a dense subset
of Cx(X). By continuity (3) holds for all a € G and all / € Cg(X). Clearly

im 4 S S Ta)=2] oo du, =2 fdu..

n-oo MED

We conclude that for g, almost all @ € X the bolt (a, ¢,a, Ta, ¢, Ta, T?a,
@,T%a,..) generates y. Clearly the same conclusion holds with T replaced by
T '=¢,00,

Conversely suppose 4, , converges weak* to u for 4, almost all a € X,
where b is the bolt b= (a, p,a, Ta, ¢, Ta,...). Clearly 4 € (C(x,) + Clx,}}*
and so T,u = . Suppose T is not u ,-ergodic. As in the proof of Lemma 2
select a Borel set £ with 0 <u (E) <4 and T '(E)=E. The following
argument was pointed out to us by Doug Lind, for which we are grateful.
(See Walters |25, Corollaries 1.5, 1.6, p. 36] for another version.) Take g €
Cp(X) such that g=y, except on a set of 4 measure less than ¢ and
|l £ll, = 1. Then by the dominated convergence theorem

| 8@ [j 8(e) d{t, ). ()~ | g(c)dy+(c)] du (@) @
converges to 0 as n— co. We may rewrite (4) when n. =2m as
3 > [s@ara) @)~ | [ s@ de @) (5)

The set where g{a)g(T*a)# xg(a) x-(T*a) has p, measure less than 2,
since T,u, =, . Since @ € E if and only if T*a € E, (5) is within 4¢ of

| 1
LI . _ 1_ L N e
m = i, (E} (u (E)) 3 u(EY— (e, (E)
We conclude 3¢, (E} = (¢ (E))* and hence 4, (E) =0 or y (E) =1 = x|
This contradiction implies 7" is u, -ergodic.

3. THE STOCHASTIC METHOD

The general situation discussed in this section could be reduced to the
small fibers case if it could be shown that each extreme annihilator for
C(x,) + C(x,) is supported on a compact set with small fibers. Unfor-
tunately, this is not the case, as the following example shows. Let a < § be a
positive irrational numbgr and let X consist of the five line segments in R?,
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+2:0 << V2 Ly= {0+ 2, (1= @)/y2) + 1: 0 <t < af V2, Ly
=t + 2 + (a/y2) 0: 0 <t < (1 —a)/\/2}. The points (2 + a/\/2,0),
(2 +a/\/Z, 1), and (2 + a/\/Z, 2 + a/\/2) all lie in one vertical fiber in X. If
4, denotes arc length on the nth line segment, u, - p, + fty — uy — pi5 1
orthogonal to C{x,) + C(x,). Every bolt that does not meet the ends of L, or
L., on the other hand, is dense in X. To see this suppose we start a typel
bolt x, units along L,, after 4 steps we return to L, at x, units along L,.
where x, — x, + ¢« is an integer. Thus after 4n steps we return to L, at x,
units along L,, where x,, - x, + na is an integer. Since {|na|:n=1,2,..} is
dense in |0, 1], where [¢] denotes the fractional part of £, the bolt must reach
a dense set of points on L, and hence on X, By Theorem 2, there must be an
extreme annihilating measure on X whose support does not have small fibers.

When X < R? no longer has small fibers, we work instead on the space of
bolts. Let #={b=(a,,a,...):b is abolt} and give .# the topology
inherited from the product topology on the compact set [ [ ; X. We prove
the following version of Theorem 2, which clearly implies Theorem 2.

THEOREM 4. Tu each i € Ext(ball(C(x,} + C{x,})"') there is associaled a
probability measure .9 on % such that .#* almost all type I bolts generate u.

We begin with Lemma 3. Let K and Y be compact Hausdorff spaces and

let {»,} be a collection of continuous maps from K imto Y. Let # =

(@12 @35 050) € [12, K2 0,00,) = 04(@,01y) n=1,23,.| Finally let

" {u,1E. | be a collection of probability measures on K. As before (@) u(E) =
plp~(E).

LEMMA 3. If (9,) iy = (@) gty 1> = 1,2, then there is a probability
measure P on [, K, supported on #, with marginal distribution p,. That
is,

j_f(an) a’j‘(a,,az....):j fx)du,(x),  n=1 2,
2 K

Jor all f € CglX).

Proof. Let %, denote the Borel subsets of K and let .#, denote the Borel
subsets of Y. Define a map U, from L'(%,u,) into L'(Py,4,.,) as
follows. For h& L°( %4, and g& L%, (¢,),eu,) define a linear
functional A, by

A(8)=| hgoo,du, (6)
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Since A, is bounded and linear on L'(.#,. (¢,).#,), there is a unique k &
Lw(ﬁY’ (W")#ﬂ") WIth

An(8)= | ()0 oty (M)
Note that

[ kool dugei= [ 1K @t = | 1K @,)tt

<[ B (o) duns 1l
PENTS ‘x
Define U, (k)= ko ¢,. Since [|U kl, v o, u,,p <ALy, u,,p fOr # in the
dense subspace L (%, #,), we can extend U, to be a norm reducing linear
map from L'(%,u,) into L'(F,u,,,) as desired. Note that Jxhdu,=
.[K Unhdlun+l by (6) and (7) Wlth gE ]5 Sil'lCC (¢n)##n= ((Drr)#nupﬂl'
Furthermore if & > 0, then U, 22> 0.

The map U, is an averaging operator, and can be best understood in terms
of disintegration of measures. We may write [4]

1,(¥) = 3(¥) 0,4x),

where ¢ is a measure on the fiber ¢, '(x) and o, is a measure on the space

',of fibers. Then # € L'( %y, u,) is replaced by a constant on each fiber.

namely, fwgl(x) hduk, the conditional expectation. Since {g,).u,=
(Pn) gty » we can write g, (¥)=uy () o,{x), and so this defines U, (h)
on each fiber for g, ,. To make this latter approach rigorous we encoun-
tered a number of difficult measure-theoretic problems and for that reason
we adopt the former approach.

We will now define . on sets of the form E, X E, X - X E, X ][, K
by

7 (E, X Ey% - X Eyx [ K)

n=1
= JK Un(Xs,, Un—l(xt.'nfl XﬂzUl(Xr,.) )ity

.7 is well defined on these sets because

oo

7 (B X Bk 4 By x K T]K) = [ U its Unlty, =)
n=1

r Tr r.. LY
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and it is additive on disjoint products. We may extend # as a bounded
regular additive set function on the field X' consisting of all finite disjoint
unions of sets of the form E, X - XE X[ K, n=12... By
Theorem IIL.5.14 Dunford and Schwartz |7, p. 138], .#* has a unique regular,
countably additive extension to the o field determined by Z; cail it & also.

Now let I be compact, L c[13 , K\#. Let 7, be the projection from
[1%., K onto the kth component, for k=1, 2,3,... We may cover L by a
finite number of open sets E_, where for some &

PlE )Moy, (E) =0
and

n(E,) =K for j#k, j#Ek-—1

Since ¥, Ukltn,_jey) =0 ae duy, F(E,)=0. Hence .#(L)=0. Since
Z is regular, # is supported on.#. It is elementary to check that
|afta,)d%(a,,a,,..)=J, fdu, as desired. Clearly .# >0 since U, >0,
and [ 1d% = [, du, = 1, so .7 is a probability measure.

We apply this lemma with K =X cR? ¢,, =7, 05, =7, =1, 2,..,
Y=n,(X)Un,(X), and u,,_,=24,, l,=2¢_, n=1, 2,.., where u=
i, —4_ € Ext(ball(C{x,) + C(x,))*). Note that .# will be the space of bolts
of type L. Define a transformation T of T[>, X onto [[&, X by

T(a,, a5, as,--) = (@3, 4,-)

Note that 7" maps .# onto .#. The map T is continuous for if E is a basic
open set of the form E=(E; X E, X« X E, X[ ,.,X), then T"'(E)=
AXXXE, XE, X - XE, X[, 1X. A F-ergodic map is defined
exactly as in Section 2.

Lemma 4. T is F-ergodic.

Proof. We first show T is measure preserving. Indeed, by the uniqueness
of %, it is enough to check it on sets of the form E=E, X E, X --- X E, X
I1l..1 X, where E,,..,E, are Borel subsets of X. Note that U,, = U, and
Uy_,=U, for k=1,2,., where U, is the map defined in the proof of
Lemma 3.

AT YEN=F (XxXxE,x X Eyx | X)

n+3

= Jx Un+2(X£,. Upir(oe UJ(ZE, U Usxt) - ) ity
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= | Ualte Wamy oo Uitz,) ) sy

= P(E)

since g, o =, and Up{x, U,0tx)) = 2x-
Now suppose E is Borel and T(E)C E, 0 < #(E) < 1. As in the proof of

Lemma2, we may suppose T "(E)=E. For f€CgX) let L, (/)=
[axela, . ay,az,.) fla,)d#. Clearly L, is a bounded, linear, positive
functional on Cp(X) and hence L, (f)= {4 fdo, for some positive
measure ¢,. Since T,%=.9 and T~ WEY=E it is easy to check that
6,,=06, and 0,,_,=6¢,, n=L2.. Thus [, fdlo,~a,)=
feifla)—flay)]xpd? = | & [f(a;) - fla;)) xp d%. Now if f € C(x,) and
(a,,a,,..) € .2, then f(a,)= fla,) and hence do, —do, € C(x,)* Likewise,
if f € C(x,) and (a,,a;,..) € %, then f(a;)= f(a,) and hence do, —do, €
C{x,)". Thus do, — do, € (C(x,) + C(x,))". Since for f € C(X),

| fQde, —do)=| xeeflar )d

and

L JQdu_ —doy)= foff(azn) 4P

we see that g, — (0,/2) and u_ — (7,/2) are also positive measures. Clearly
#, —(©0,/2) — (1 — (6/2)) € (C(x,) + C(x,))". Hence if 1 = (0, — 0,)/2

A
1A

b

u= Al TP

+ e — 4l

with
=[G, % _a _%) _
AL+ e lef2+2+j(m 2)+](u, 2) .

Since u is extreme, either ¢, =: 0 or ¢, = 2u, . But then .9°(E) = [y, d?=
[ dg, =0 or 1. This contradiction establishes Lemma 4.

Now if f€ Cp(X), let F(a,,a;,as,.)=f(a;). By Birkhoff's ergodic
theorem

l n
m — S FoTkm=| Fd#
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for .#-almost all type I bolts b. By Lemma 3, this may be rewritten as

. l "1 )
lm — N flay.)=2] fdu,

noen M

for .# almost type I bolts b= (a,, a;....). Likewise

im N f@)=2] S

neoo T

for % almost all type I bolts b = (a,, a,....). Since Cx(X) is separable, as in
the proof of Theorem 3, we conclude that -almost all typel bolts
generate y.

4. SUBALGEBRAS OF Cp(X)

Now suppose X is a compact Hausdorff space and that 4, and 4, are
(real) subalgebras of Cy(X), the real-valued continuous functions on X, that
together scparate the points of X. We define equivalence relations ~ by:

a~b if and only if fla)= f(b) for all fEA4;, I=112 Let X, denote the

J
equivalence classes and let 7; be the usual quotient map of X onto X,. A bolt
of lightning b, the associated measures g, , and the space of bolts .# are
defined as in Section L.

THEOREM 5. If X is a compact metric space, then lu each u&€
Ext(ball(4, + A,)*) there is associated a probability measure 5 on % such
that & almost all type 1 bolts generate p.

The proof of Theorem 5 is formally the same as the proof of Theorem 4.
The only place where we require X to be a metric space is in the very last
argument in the proof of Theorem 4, where we use that Cp(X) is separable.
We can avoid this problem in the next two corollaries.

COROLLARY 3. If X is a compact Hausdorff space, then A, + A, is dense
in Ce(X) if and only if i, , converges weak™ to 0 for each bolt b.

Proof. Indeed if 4,+A, is not dense, there is a measure y€
Ext(ball(4, + 4,)*) and an f € Cg(X) with [ fdu+0. By the proof of
Theorem 5, we can find a bolt b such that

lim Lf di, = Lfdﬂ-
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But if ¢ is any weak* cluster point of {g,,}. then ¢ € (4, +4,)* and
[ fdo =] fdu=+0. Thus {u, ,} does not converge weak * to 0.

COROLLARY 4. If f € Cy(X), where X is a compact Hausdorff space.
then

dist(f, 4, + 4,)=max :bis abolt

lim sup de,umb
n—+m

Finally, we mention that the description of measures orthogonal to
C(x,)+ -+~ + C(x,) on a compact set X ¢ R", n > 3, seems to be beyond the
scope of the methods discussed herein. A bolt of lightning beginning at a
point a, € X = R? is built by first “cancelling” J, in one direction with
—0,,, then cancelling —4,, with a point mass in the other direction, etc. In
23, there are many directions in which we need to cancel d,,. There does not
seem to be a reasonable description of a sequence of points b=(a,,a,....)
and weighted point mass measures 4, , which generate extreme u's such that
any weak* cluster point of g, is orthogonal to C(x,) + -+ + Cix,), nz3
There is one such attempt in Diliberto and Straus |6], but there is a gap in
the proof. Extreme annihilating measures are probably generated by trees, as
used by Arnold in his proof of Hilbert’s thirteenth problem, but these grow
too fast for any sort of averaging process to work.

After this work was completed, the following article came to our attention:
W. A. Light and E. W. Cheney. On the approximation of a bivariate
function by the sum of univariate functions, J. Approx. Theory 29 (1980),
305-322. It contains another proof of the Diliberto and Straus theorem, as
well as a number of references to related work.
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