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1. Introduction

This paper is about approximation by (analytic) polynomials in 2n complex
variables on the graph X :w=f{(z) of a function f: Y=C", where YCC" is compact.
The result is as follows (see Sect. 2 for notation). '

Theorem. Let YCC" be compact. Let f be a Lip 1 function on a neighbourhood of Y,
with values in C". Assume that X = {(z,f(z)) : ze Y} is a polynomially-convex subset of
C?". Let ECY be closed, and suppose that at each point ac Y~E, the Frechet
derivative Df(a) exists and is continuous, and the matrix fa) of Z-derivatives is
nonsingular. Let 0<a<1. Denote by E the set {(z,f(z)):z€E}. Then a function

g :X—C s a limit of polynomials in Lip(x, X) norm, if and only if gelip(a, X), and the
resrriction g|E is a limit of polynomials in Lip(e, E) norm, i.e.

closy ;. x)Clz. wl =lip(e, X)nclos o, 5 CLz, w].

For example, if f is continuously-differentiable on a neighbourhood of Y, and
the polynomials in z and f'are dense in lip(, E), where E = {ac Y:detf.(a)= }. then
the polynomials in z and w are dense in lip(a, X).

The case E =0 of the theorem follows from a result of Range and Siu, at least in
the case when Yis difffomorphic to a ball. They proved [8] that, in that case, the
functions analytic on a neighbourhood of X are dense in C'(X) (even without the
assumption of polynomial convexity). Since C*(X) convergence implies Lip(a, X)
convergence, and C'(X) is dense in lip(a, X), the case E =0 of our theorem follows,
by the functional calculus for Banach algebras [2, 111.4)], in view of the polynomial
convexity of X,

An analogous result for uniform approximation was proved by Weinstock
[14].

We prove the theorem by using integral transform of distributions. We
combine the ideas of Weinstock, based on Cauchy-Fantappié kernels, with the
ideas of [5, 7]. The resulting proof is simpler, in the case E =A@, than that via the
Range-Siu result.
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2. Notation

For a Banach space B, and a subset ACB, we denote the closure of 4 in B by
closyA. We denote the dual space of B by B*. We denote the Frechet space of C*
functions f: €"—C, having compact support in an open set U CC", by Z(U). For a
compact set X CC" and O0<a =1, Lip(a,X) denotes the Banach algebra of all
functions f:X —C such that for some x>0,

If(x)—f W) S xlx— yI*

whenever x, yeX ; the norm of such an fis the sum [|f||, + [[f[;, where [[f]|, denotes
the least value of k. The closed subalgebra lip(x, X) consists of those f'such that, for
each € >0, there exists 6> 0 such that

) - =elx—yl*

whenever |x—y|<d. The space C[z,w] consists of all polynomial C-valued
functions of z=(z,,...,z,) and w=(w,...,w,), with complex coefficients. The
notation {z, w) stands for z, w, + ... +z,w, ; note that it is bilinear, not sesquilinear.
We denote n-dimensional Lebesgue measure by #" and the total variation
measure of a complex measure u by |ul, ie. for each Borel set E,

oo

UWE=sup ¥ IKE,.

n=1

where {E,}* runs over all countable partitions of E into Borel sets.

3. Proof of Theorem
The assertion we wish to prove is equivalent to
clos ., nClz.f(2)]= lip(ar, Y)nelosy ;.. €Lz, f(2)] . (1)
This equivalence rests on the fact that the map
Y-X
z(z, f(2)

is biLipschitzian.

It is straightforward that the left-hand side of (1) is a subset of the right-hand
side.

To prove the converse, it suffies, in view of the separation theorem, to show that
if a continuous linear functional Te Lip(«, Y)* annihilates C[ z,f(z)], then Talso an-
nihilates the right-hand side in (1). Let T, = T|2(C") be the distribution induced by
T. Suppose we can show that T, is supported on E. Let gelip(x, Y)nclos; ., 5T
[zf]. Choose a sequence p,,C[z.f] such that p,—g in Lip(e, E) norm. There is a
continuous extension operator from lip(a, E) to lip(e, Y) [13, (V1.2.2.3), p. 175], so
there exist functions g, €lip(o. Y) such that g, =g —p,, on E and g, —0in Lip(o, Y)
norm. By [11, 4], each function belonging to lip(z, ¥) which vanishes on E is the
limit in Lip(e, Y) norm of functions which vanish on a neighbourhood of E. Thus
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there exist functions g,,€lip(,Y) (r=1,2,3,...) such that g, vanishes on a
neighbourhood of E and g,,—+g— p,,— g, in Lip(«, ¥) norm, as r7oc. By extending
g, to a lipa function on €", having compact support, and by convolving with a
sequence of mollifiers, we obtain a sequence g, (s=1,2,3,...) of elements of
Z(C"), vanishing on a neighbourhood of E, such that g,,,.,—¢,, in Lip(e, ¥) norm,
as stoo. Thus Ty, = &g T,9pps =0. Thus

Tgy=T(g—p,)=T@G—Pn— 9w+ T9n
= lim Ty,,, + Tg,,= 13,,—0
rt oo

as mToo, hence Ty=0. Thus it suffices to show that T, is supported on E.

To show that T; is supported on E, it suffices to show that each point ae Y~E
has a neighbourhood U such that Te =0 whenever e 2(U).

Fix ac Y~E. We will show that there exist a neighbourhood U of a, a
neighbourhood V of ¥, and a function Q({, z) mapping each ze Vto a (2n—1) form
of type (n,n—1) in { on U, such that

o(z)= [ QL 2)A00(0)

Ll

whenever ze IV and @e 2(U). The form

fl= ¥ KJ,.(C,:/z)aiLf1 Ao NGy AT Ao AL, AdE, A ..o ndE,
. ey

will have certain additional properties, specified below.
There exists [5, p. 386] a complex measure x4 on Y x ¥, having no mass on the
diagonal, such that

g(x)—g(y) dul

T=
. rxy Ix—=)"

X, ¥)

whenever gelip(«, Y). Thus, for g€ Z(U), we have T represented as

[ [0 0- 0 ) A fp@) 25)

YXY U lx—y*

The additional properties of @, referred to above, are as follows. First, there
exists a constant M, >0 such that

| KU x)— QL )} Ao(QI M, |x -yl ol 2

telU

for all x, ye ¥ and all (0, 1) forms w on U with bounded measurable coefficients.
This allows us to apply Fubini’s theorem to write T as

A 0@(L).

[ {0 x-o¢ ) 2
UYyxy lx i _})l
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The second property of Q is that for #’*" almost all (e U and each je{1,...,n}
there exists a positive function @({,x, y) on ¥ x ¥ such that

[ SExNEEY 4 o 3)

yx¥ =g
and there exists a sequence p,(z, wye €[z, w] such that p,(z, f(z))— K ({, z) point-
wise on Y~ {{} as m{co, and

P, £(X)) = Py, fOI S P, X, ¥) 4)

for all x,ye Y~{{} and all m.
Since T annihilates €[z, f], the dominated convergence theorem and this
second property show that

| (ee -0 25 o
Yy |x— yI*
for £*" almost all {e U. (Note that g has mass zero on {{} xY U ¥Yx {{} for &*"
almost all {.) Hence T =0 for all g Z(U), as required.

The forms €((,z) are Cauchy-Fantappi¢ forms, construced in Weinstock’s
manner [14, 16]. It is merely necessary to demonstrate that this forms have the
properties we need, which are more stringent than his requirements. To this end,
we review his construction. Since f is continuously-differentiable at @ and f.(a) is
invertible, there exists a neighbourhood U, of a such that the function

gl zw)= ==z fila) {fO—w— L@ -2

satisfies

g, 2)=—lz—{?+4q(.2) 5)

for all {,ze U,, where
la(C, ) = M,lz— 1%, (6)

where M, <1 depends on a but not on { or z. Here g({, z) stands for g({, z, (2)): in
general @i(z) shall denote u(z. f(z)), i.e. # is the function on a neighbourhood of ¥
induced by a function u on a neighbourhood of X.

Next, by solving a Cousin problem with smooth dependence on a parameter,
Weinstock finds a neighbourhood W, of X in €*" and functions H({,z w) on
U, x W, and x({,z,w) on U, x U, x U, such that (a) both are C! in { and analytic
in (ﬁ,w) (b) x is nonvamshmg, (c) H=xg on U, xU, xU,, and (d) there exists
M, >0 such that H((, z) takes no value in the sector

{weC:0<|w|<M,, Imw| =M, Rew}

for any (e U, and ze Y.
By [15], there exist functions H,({, z, w). C' in {e U, and analytic in (z, w)on a
neighbourhood W, CW, of X, such that

H z,w)= 2, (G—z)H (2, w).

k=1
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He chooses a neighbourhood N of Ysuch that (z, f(z))e W, for all ze N, and defines
G((,z)=H({ z), G,=H,, and the form ((,z) as
m—1! 2

5t kzl (=1} 'G,G™"G,Gy A ... AGGy_,

= = v I
AOGyyy Ao ACG, AL A AdL,.

Let U be a bounded neighbourhood of a with closUCU .
By (5) and (6), |G,({, z)| M ,|z—{| on U x N, where M, >0 is independent of {
and z. Also |x| is bounded below on U x U x U, hence

|Gl= M|z—{J? (7)
for some M, >0, independent of ({,z)e U X N. Let

SH Ao AGH,_ AOH 1 A...ACH,
= Z Rkj(é',z,w)dfl - Adzj,l /\dfj+1 - AdC_n,
i=1

(n—1)! ¢ k—1
Zm' kgl ( 1) HkRkj ’

S{l z,w)=

Then §; is continuous in (e U, and analytic in (z, w)e W,, and K £ (4 z)=§ G
To prove the first property of 2, we need only show that for each je {1....,n},

¥
(1846 068 x) = S 9)G"(E AL S Mlx— I, (8)
U

where M, >0 is independent of x, ye Y.
The Frechet derivatives D_S/((,z) and D_G((,z) are uniformly bounded on
U x Y. Thus we have constants M, and M such that

IS8, %)= S Y SMlx -y

G0, 2)— G AL WIS Ml — . o
Since G,({.{)=0, it follows that S({,{)=0, hence
IS}(E", x)léleé—x! {10)
|G L, x)| = Mg|{—x|.
The latter inequality permits us to conclude that
IG({, x)— G({, y) = Mg|x — yimax{|{ — x], |{ — y[} (11)

for a certain constant M, >0.
Given the estimates (7)-(11), the estimate (8) is proved by using the old
Frostman two-ball trick, much as in [6]. Indeed, the left-hand side is bounded by

|—l

M olx—yllog|x—y

This fact is possible well-known. Certainly, for the Bochner-Martinelli kernel
(G;=z;—()) it is classical (cf. [10, p. 1175; 13, p. 442); the argument for general G,
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is not essentially different. In any case, we think it worthwhile to indicate the
details, since we have not found them elsewhere. Incidentially, the delicate
Lipschitz estimates which sometimes arise with kernels for solving the @ problem,
as in [1, 3, 4, 9, 10, 13], are not in question here, because we have no boundary
integral to deal with.

+
Let 2r=|x—y|, z=¥,

Bx={CEUZ|§—XI§1—r},

B,.={ceU:u:—y|g1—r},

T,=U~B,~B,.
Then

[ IKL)—KLdg™ O [+ [+ | .
LelU By B

T

Now (suppressing {)

IK )~ K01 S 15,001 167(x) = 6" +13 00— 011G
=i, 1
SM|{—x ¥ 1GE) TGO " MGx) — GO
k=0

+M.r|Gy)™"
Thus for (e B,,

A=}k
|Kj(X)—Kj(}’]|§M“ Z rﬁ2n+2k+2|C—xif2k*1 +M12r_2n+ 1 :

k=0

hence

n—1 r
I IKj(x)_Kj(y)ldyZn(C)ngs Z o 2n+2k+2 ISZn—zkfzds_!_Ml‘ir
Bx k=0 0

=M,,r.

Similarly
j |Kj[x}—Kj(y)Fdi"z"(C)éer'
B,

On T,,, we have
M l{—zsl{—x|=M,;|{-4,
M l{—z S -y =M I~z
1K (x)— K ()| M |G ™"(x)— G0 +18,x) = S0 1G ")

n—1

SM t—2 ¥ =222 0=zl [x— Y|+ My glx — | [{— 2| "
k=0

=M, rl{—z"2".
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Thus if d=diam Y, we have

[ 1K) =K nldL* ()= M ot — 2|~ 2"dL?"(()

" =li-z|=d

s
A

M,r

#13’%&
“ J =

=M,,(1+log, r~Y)r.

The estimate (8) follows.
Now we turn to the second property of Q. From the details of the above proof,
we note that

N n—1
IS X 1GE)* G ™" |Glx) — GyIdL () £ My |x — )
k=0

celU

for some M,,>0 and all x,ye Y.
Using (7), we see that the integral

§ 1E=xI'"HG(E, x)|~"dL*"(()
el

is bounded independently of xe Y. Let @,({, x, y) denote

suplS,(x)| ¥ 1G(x)| ¥ YG(y)| " HG(x)— G()|
4 k=0
- n—1
+suplS, ) X 16O TG THG) - GO
k=0
+ = PIE = X1 TG ™" + |x — pIFIE = ¥ TG 7"
+[x—yl.
Then
| @, x, )dL =M, lx—yP,
CelU

and hence, by Fubini's theorem,

d s
{ BiL a0 lul(x, )

Yy =3 0%

for #2" almost all (e U.

Fix {€ U such that (12) holds. We proceed to establish the second property of Q
by using a suitable multiple of @,((, x, y) for @.

Let @, (z,w)=(H({,z,w)—m~')"', m=1,2,3,.... By the omitted sector pro-
perty (d), there exist m,>0 and M,,>0 such that Q,, is analytic on a neigh-
bourhood of X and

10,.(2) M, 4|G(L,2) =

whenever mzm, and ze Y. Also @, (z)— G~ *({, z) pointwise on Y~ {{} as m1 0.
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Fix je{l,...,n}. Fix x and y belonging to Y~ {{}. Then |x—y|=2[x—{] or
|x— y| 2|y —{|, for otherwise the triangle inequality yields |x — y| <|x — y|. Suppose
|x—y|£2|y—¢|. Then for m=m, we have

15, )00 (x)— 5 ¢, »)Om)
<15, 01086 — O + 18,6 )= S 10

n—1

<184, x)| kz 105+ ()0 ()] [Gx) — G + M, M g|x — Y G, v ™
=0

n—1

< M3 IS (x) kgﬂ|G(x)r**1|G(_v)\*-"|c(x)—G(yn

+ MM 2=y =yl THGE YT
§M26¢1(C9 X, y)

Similarly, if |x — y| = 2|x — |, we obtain the same estimate. Thus the estimate holds
for all x, ye Y~ {(}.

Now S§((,z, w)Q"(z,w) is analytic on a neighbourhood of X. Since X is
polynomially-convex, it is the joint spectrum in the Banach algebra Lip(1, Y) of the
elements z,, ..., 2, f1, .. f, By the functional calculus for Banach algebras, there
exists a polynomial p,(z,w)eC[z,w] such that |p,—S;Qnl <m~'. Thus for
m=>my,

1B,(%) — B £2: M 32|18 - @(x, y)+m ™ Hx— |
<{2-M¥| S, +1}0(x, ).

Thus (4) holds. This proves the second property and concludes the proof of the
theorem.
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