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QUALITATIVE RATIONAL APPROXIMATION ON PLANE COMPACTA

A. G. O'Farrell®*
fbstract

Let X be a compact subset of the complex plane. Let R(X}
denote the space of all rational functions with poles off X. Let
A{X) denote the spzace of all complex-valued functions on X that are
analytic on the interior of X. Let A(X) be a Banach space of func-
tions on X, with R{X)CA(X)€A(X}. Consider the problems:

{1) Describe the closure of R{X) in &a{X}. {2} FPor which X |is
R(x) dense in A(X)? There are many results on these problems, for
various particular Ranach spaces A{X). We offer a point of view from

which these results may be viewed systematically.

1. Introduction.

(1.1} TLet me begin by indicating how my topic fits into the world of

mathematics.

Qualitative rational approximation theory answers the gquestion:
is it possible to approximate a given function arbitrarily closely by
rationals? There is also a guantitative theory, which addrésses the
guestion: how closely can a given function be approximated by rational
functions of a specified degree? Experience indicates that the quanti-
tative theory lags behind the gualitative by anything up to thirty
years. For the kind of gqualitative results I shall present, the guan-
titative theory is nonexistent or primitive. ’

after the guantitative theory comes the computational theory.,
culminating in practical computer programs. The expected time lag here
is another twenty years or thereabouts so perhaps by 2020 A.D. the

results will be ready for use by the engineers and scientists. What
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will the engineers and Sciéntists do with them? It is probably better
not to know. For instance, the theorem of Weierstrass, that periodic
functions on the line may be approximated uniformly by trigonometric
polynomials, finds application in digital recerding. This makes possi-
ble the indefinite preservation, with effectively complete fidelity,

of all kinds of unspeakable rubbish.

I shall not deal explicitly with polynomial approximation. Ex-
cept inh the case of P approximation (1 £ p< +=), polynomial
approximation is possible if and only if rational approximaﬁion is
possible and the set is polynomially-convex. For P polynomial
approximation there are very interesting and formidable problems.
See {2] for results and references to the work of M. M. Dirba%jan,
V. P. Havin, V. G. Mazja, S. N. Mergelyan, A. P. Tamadjan, A. L.
Zaginian, and S. C. Sinanjan.

I restrict myself to compact sets. For weighted uniform
approximation the theory on closed unbounded sets has been developeé
by N. U. Arakelian, P. M. Gauthier, W. Hengartner, A. Roth, S.

Scheinberg, J. L. Walsh, andé others. See [7,8] for references.

The theory in several variables is comparatively primitive.

(1.2) My objective is to give the essential facts about gualitative
rational approximation on plane compacta. I shall endéavour to make
the results seem intelligible and natural, but I will not include any
proofs. Suffice it to say that the proofs are guite inhomogenecus,
and in many cases long and intricate.

My account will not be historical, nor will it reflect the logi-
cal structure of the existing theory. Instead, I shall present the
results in an order in which I would like to be able to prove them,
from my point of view.

The results I shall present were developed ir the period 1955~
1980. The main contributers to the core of the theory were T. Bagby.,

A. Browder, L. Carleson, A. M. Davie, E. P. DolZenko, V. P. Havin,
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5, Ya. Havinson, J. Garnett, A. A. Gonchar, L. I. Hedbergq, M. S.
Melnikov, S. N. Mergelyan, §. 0. Sinanjan, A. G- vitushkin, and J.
Wermer. 1In the prehistory of the subject, during the first seventy
years after the Welierstrass approximation theorem, the outstanding
contributers were C. Runge. H. Lebesgue, J. L. Walsh, T. Carleman,

A. Roth, 0. J. Farrell, F. Hartogs, A. Rosenthal, and M. V. Keldysh.

{1.3) Arbitrary plane compacta can be pretty complicated objects, and
as a result, rational approximation,on such sets is an extremely per-
verse subject, teeming with surprising counterexamples. I am not going
to dwell on examples. I am going to present positive results. In
doing this, I run the risk that the beginner may not appreciate that
the most surprising thing about the subject is the existence of a
moderately extensive body of positive results; and consequently that
he may feel that the formulation of some of these results is a little
complicated. He can rest assured that all the simple answers have

peen tried and found wanting.

§2. rormulation of the problems.

(2.1) Let X Dbe an-arbitrary compact subset of the complex plane, C.
Let R(X) denote the space of all rational functions with poles off

%. Let A(X) denote the space of all functions on X, analytic on
the interior of X. Let B(X) be one of a certain list (see (2.2}
below) of Banach spaces of complex=-valued functions on X, such that
R(X)= B(®) and the subspace A(X) = B{X}(A(X) is closed. Let RI{X)
denote the closure of R(%) in B(X). Then R(XYC A(X). We consider

the following two main problems:

{1) Give a reasonable description of R(X). i.e. give an explicit
condition on a function fe¢B(X), necessary and sufficient

for fegR{X).

(2} For which compact X is R(X) = A(X)?
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{2.2) The main examples of Banach function spaces B{X) are as

follows.

(1y tPx) = tPix,m (1 < p < »), where m is area measure on X.

(2) C(X), the space of continucus functions on X, with the sup

norm, || £]| -

(3) Lip(a,X) {0 < a < 1), the space of functions f for which

there exists a constant x > 0 such that
TE(x) - £(y) ] < klx-y]®

for all x,ye X. The norm of f 1is |/f|{_ plus the ieast
value of «x .

(1) Ck(x), for k a positive integer. This space has two versions.
Let Ck denote the space of k-times continucusly-differentiable

functions on €, with bounded partials up to order k. Then Ck

forms a Banach algebra with the norm

k 1 ]
el = 31 ER -
j=0 r+s=j) '
Let I and J denote the closed ideals

i = {feg Ck : f =0 on X},

b
J:{fgck:_._.?__".f_=0 on X, O(j(k,}:+s=jr.
r s - =

dx 9y

The func¢tion version of Ck(X} is the quotient space Ck/I

{with the guotient norm). The jet version of c®(xy  is the
guctient space Ck/J. The jet version has an alternative, local,
description, via Whitney's extension thecrem (23, Ch. 6]. Ths
natural guotient map from the jet version onto the function ver-
sion is occasionally injective and a2 homeomorphism, but usuallvy
not. In case k = 1, the function version has a local descric-

tion [13].
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{5) Lip{k+a,X}), 0<keZ, 0<u<l. This space has a function version
and a jet version, derived from the global space Lip(k+a) of
functions in Ck with k-th partial derivatives in Lip @ . There
is a local description of the space [23, Ch. 6, p. 176].

(6} The Sobolev spaces Wk’p(X) , 0<kegZ, with function and jet

wk,p of functions

versions, derived from the glcbal spaces
whose k-th distribution derivatives are representable by L?

functions.

mpart from these main examples, there are welghted P spaces,
mean Lipschitz spaces, weighted Sobolev spaces, and so on.

Note that in every instance B 1is really a function X — B(X)
on the compact subsets of €. Moreover, in each instance B(X) may
be derived from a global space B = B{C} by restriction, and the norm
induced by B(C) 1is eguivalent to the given norm. Thus B(F) may be
defined by restriction for all clesed FCC. Each B has a localness
property: if X is compact, f : X - €, and each point a ¢ X has
a closed relative neighbourhced Y in X such that feB{(Y), then
feB(X). .Each B has a technical property, called T-invariance. It
states that if f:=B({X} and ¢ € P(= the space of ¢” functions with

compact support), then the function T f defined by

[
/Ek
T f =¢f - f 2
$ 5%

also belongs to B{X), where the Cauchy transform 4 of a measure u

is defined by

The operator T¢ is called the Vitushkin localization operator. It

is used to chop up the singular set of an analytic function.
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(é!é) The‘aﬁs;é e2;mpié§:of Banacﬁ“fﬁnctioh spaces ﬁs(x) ére o;aefed
by continuous {and usually compact) incluéion maps :
WP - K o WP,
Lip(k+a,X) » c(X) + Lip(k-1+a,X) |
Lip(o,X) » C(X) + LP(x) ,
Py - P () ., (p>p") .
WPy ~ WP, (prpY)
WEHL e () *Lip(k+%,x) , (E§+

Lip(k+a,X) - Lip{k+o',X) , (a>a)

Approximation in one space implies approximation in all larger spaces,

since the injections are continuous.

§3. Preliminary.

UYHF) - Rational approximatiGivin 41l these:Banach spaces is local. - -

Precisely speaking, we have the following result, due to E. Bishop

for B = C.

Theorem. Let fe B(X), and suppose every point a ¢ X has a

closed relative neighbourhood YCX such that

£]¥ & R(Y). Then fe R(X].

This means that the answers to the main guestions (1) and (2] of
(2.1) should involve only local properties of £ and X. The prool

is an application cf the localization operator, as in [14].
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{3.2) Theorem {(Runge). Let feB(X) be (the restriction to X of a

function) analytic on a neighbourhomd of X. Then

fe R(X}.

See [15]. As a result of this, the closure of R{X) in B{X) is

the same as the closure of

H{¥X) = {f : £ 1is analytic on a neighbourhood of X}.

(2.3} From the Cl level up, i.e. as soon as B & Cl is continuous,

the point Cauchy-Riemann operator (at a point ae X)=
= oY af . Of ‘i
a2 . - = 1 — —
3 (a) = £ =+ af(a) S [ax(a) + 1= fa)

can be expected to play a r6le. It will be a contimwoms linear func-
tionzl on B(X). Since 3f(a) = 0 for fe R(X), it follows by

continuity that 3f{a) = 0 for fe R(X).

{3.4) Since R{X) consists of functions which are imfinitely-
differentiable on a neighbourhood of X, the cleosure nf R(X) in
B(X} 1is contained in the closure of c¢® in B(X). Thus it makes
little sense to work with a space B(X), in which €” is not dense.
This is why L¥{X) was left out of the list in (2.2); the closure of
¢ in L®(X} is C(X). For the same reason we must work with the
spaces lip(k+e,X) instead of Lip(k+u,X}, for 0 < a < 1. These
spaces are the closures of € in the respective nexms. For

0 <z <1, lipl(a,X} 1is the space of functions f ¢z X - ¢ such that,

given £ » 0, there exists &6 > 0 such that
[£(x} - £(y)| < e|lx-y["

whenever xc¢X, yeX, and |x-y| < é. It is also the space of
restrictions of the corresponding global 1lipa space [23]. For

0 <k e and 0 < a < 1, lip{k+a,¥) is the space {with two versions)
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of functions {or jets) on X with exfensions in global 1lip(k+a),
which in turn is the space of functions £ : € -~ € such that £ and
all partial derivatives up to order k belong to lip @¢. For

0 < k € T, the closure of ¢° in Lip(k,X} is not so easily de-

scribed, but for k = 1, it is known [16] that

fe clos Lip (LX) R{X)

if and only if
feclos clix) R{X) .

3

j.e. Lip 1 rational approximation reduces to C rational approxima-

tion; this renders it unnecessary to describe the Lip 1 closure of

L]

c on X. It may be possible to do the same Ehing for Lip k.

{3.5) 1In general, an optimist might hope that the answer to main

problem {2) would be categorically appropriate to the functor B, and
would be free of “"analytic" elements, i.e. that for B = LP it would
involve only area, for B = C it would be topeolegical, for B = Lip ©

1 it would involve the Cl-differential

it would be metric, for B = C
structure of X, and so on. BAs we shall see, socme of these hopes are

fulfilled.

(3.6) The outline of the theory is as follows. The 1P theory. for

1 <p <2, is trivial. The remaining B divide into two broad
classes: the smooth class (B Licl), and the hairy class

(Cl -8B, B¥ Cl). In the smooth class the point Cauchy-Riemarn
operator plays a crucial role, and the results are pretty simple to
state. In the hairy class, which embraces LP(Z <p <=, C and
1ip a(0 < a < 1), it takes a bit of effort to digest the statements,

let alene the proofs.

{ 3.7) There are several unsolved problems in the theory, and I have

indicated some of them as they arise.
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4. The Smooth Class.

(4.1} Consider the jet spaces B = Ck , lip(k+a). All jets in R{X)

satisfy the Cauchy-Riemann equations on X. The jets in A(X) need
only satisfy the Cauchy-Riemann equations on the ¢lesure of the in-
terior of X. For any point ae X~ clos int X, there exists £t A(X)
such that af{a) # 0. Thus, if X ¥ clos int X, then R{X) # A(X}.
The following theorem solves main problem (1) for the jet space

B = lip(k+a) [17].

Theorem. Let 0 <k e X , 0 <a <1l , B = 1lip({kta) , and let

X< € ke compact. Then R(X) is the set of all jets

feB(X) such that
333 _
erays

on X for 0 < j <k-1l, r+ s =].

This says that a jet is approximable by rationals if and only if it
satisfies the Cauchy-Riemann equations on X, and also satisfies all
consaguences of the Cauchy-Riemann eguations which make sense for jets
in  3(¥). '

As an immediate corollary, we have the sclution of main problem

{2) for B = lip(k+a).

Corollary. R(X} = A{(X) if and only if X = clos int X.

The corresponding results for Ck and Nk'p have not yet been

established.

(4.2) For the function spaces Ck and lip(k+a), problem (l) has
not been solved. Problem (2) has been solved only for sets with

empty interier.
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Theorem (18,17]. Let B = Ck or lip{k+a), 0 <k e 2, 0 < a < 1.

Then R(X) = B{(X) if and onl? if X 1is a suvbset of a

finite union of pairwise-disjoint simple curves of class

B (i.e. class Ck if B = Ck and class lip(k+a) if

B = lip(k+a)}}.
The corresponding result for Wk'p has not been proved.

(4.3) 1 remark parenthetically that Theorem {4.1) yields the solution
of the rational approximation problems in the Fréchet jet space C7(X),

since C™{X) is the injective limit of the spaces lip{k+%.X).

§5. An example.

Before presenting the results on the hairy class cf B's, I

give an example to indicate the flavour.

O OO

o 0 0 & ©0 Q0 ©° 0

- - - - -
T I P Y T R

Figure 1

Consider the open unit disc D, and let be &n arc of posi-
tive area joining ~1 to 1 and otherwise lying in D. Take a

countable family of open dises D D™ T with I dien D < + =,

T

such that each point of [ belongs to clos U D,- et
n
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‘u:
X=¢clos D~ U D .
n=1

Find a homeomorphism ¢ of € onto € which maps T onto the line
segment ([-1,1}. Let Y = ¢{X). Then it can be shown f[cf. 5, p. 220
and p. 235 (13.2)] that for B = C we have R{X} ¥ A{X) and

R(Y) = A(Y). Thus uniform rational approximation is nof determined

by topeological criteria.

§6. Second main problem for the hairy class.

(6.1) For 1 < p < 2, the LF problems have a trivial answer.

Theorem. Let 1 <p < 2, B = 1. Then A(X) = R(X) for all compact

X.

(6.2) Consider B =LP (2<p<=), ¢, or 1lip e(0<u<l). Problem
(2) is about the relative size of the spaces R(X} and A(X). In
view of Runge's theorem, we can replace R(X) by H(X), and so the
problem concerns the approximation of functions with singularities on
€ ~ int X by functions with singularities on € ~ X. Recalling that
the approximation problem is local, we fix an open disc D, and lock
for ways of compariné the set of functions with singularities in

D ~ int X with the set of functions with singularities in D ~ X.

The key idea is to measure the
relative sizes of these singu-
larity sets by means of a capacity.
A capacity is a nonegative in-

creasing function

z
y ¢ 27+ [0,=].

Figure 2
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The capacity Yy associated with B assigns a number YE(E) to
each set Ec €, and this pumber is a measure of the size of the
collecticon of functions with singular support in E. The definition

of YB(E) for compact E 1is
sup |a;(£) [,
£

where f runs over all functions in the unit ball of A(C~E) {(in-
terpreted in the obvious way, since € ~ E 1is not compact), and

al(f) is the coefficient of 1l/z in the expansion

+1}

a
£lz) = a, + —= + —2 + |
0 z 2
z
of f near «. For arbitrary sets E, YB(E) _is defined as

sup{yg(F} : FcE, F compact} .

It is not very surprising that if R(X) = A{X). then
YB(D'MX) = YB(DﬂaintX) for every open disc D. The extraordinary
thing is that the converse holds, so that a simple collection of

numerical invariants characterizes rational approximation.

Theorem [24,9,1,10,11,15}. Let B = LP(Z <p <=}, C, 9or

lip a{0 < @ < 1). Then R(X) = A(X) if and only if

(D~ int X} = (Dn XY for all open discs D.

B s
{(6.3) Por practical purposes, the above theorem is of no use without
a computational description of Yg- In order to use the theorem to
decide whether or not R{X) = A(X) for a specific compact set X, we

need to be able to compute (E). The problem is markxedly simplified

Tz
by the fact that the capacity condition of the theorem is equivalent

to the formally weaker condition:
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mhere exists ¢ > 0O such that YB(DﬂaX) > K YB(Dﬁxint X}

for each open disc D.

This means that it is sufficient to identify up to multiplicative

s
bounds, i.e. to find an explicitly-computable capacity F : 2c->[0,W]

such that there exists a constant « > 0 (which need. not be known)

such that

-1

kK © F(E) 2 Yg(E) < ¥ F(E)
for all sets ECC.

{6.4) The case B = lip al0<a<l) is simplest to describe. In this

+ . :
case Yg is comparable to Mi ®  lower (l+a) - dimensional Hausdorff
content [19]. This content is defined as follows.

for h : [0,=] - [0,=] and EcC we define

Mh(E) = inf I h{diam D)
§ DeS

where § runs over all countable coverings of E by open discs. For
instance, in case hir) = rB. My is denoted MB and is called &=

dimensional Bausderff content or size infinity approximating 8-

‘dimensional Hausdorff measure. We define

ME(E) = sup nh(E)
h

where h runs over all functions [0,=] = [0,=} such that

hir) < r-  and r_eh(r) + 0 as r ¢ 0.

It turns out (20} that ME(E) = MB(E) if L[ 1is open, so

Theorem (6.2) specializes to the following explicit result.

Theorem. Let B = lip a{0<c<1}). Then A(X) = R(¥) if and

only if there exists « > 0 such that
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Wt pax) > « M (Dn int )

for all open discs D.

Note that this is a metric condition. It implies that 1Z X = ¢(¥)
where ¢ : € » € 1is biLipschitzian, then R{X} = A{X} if and only

if R(Y) = AlY).

(6.5) In case B = P (2 <p <=, the capacity g is of the
potential theoretic kind, and has a couple of explicit descriptions
[L1]. One is that for compact E;, YB{E) is comparable to

inf llu]

a wl.q

where u runs over all functions in ¥ with w 2> i on E. Here g

is the conjugate index to P, i.e. + = 1, and the wl,q norm of

e Rl
ol oo

w is the 1% norm of |u| + |vui. Another description is that

YB(E) is comparable to

sup k{E) .
u

-

where u runs over all positive measures supported on E such that

the potential K * u has LP norm at most 1. where K{z} 27 is

the Newtonian kernel. In the Hilbert space case, P % 2, which was
the first to be cleared up (91, Yg is the logarithmic capacity.

For all p, the capacity Y is a true Choguet capacity. and

B
as a result it generates a corresponding fine topology on the clane.
For those unfamiliar with such things, it may be helpful to describe
a similar fine topology. The density topology on the plane 1is the

topology for which a set N is a neichbourhood of a point =& 2 E

aeN and C~N has area density 0 at a, i.e.

lim m{B(a.rz) ~ N L og .

r+o T
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This topology on € is finer than the Euclidean topology., yet it is
still connected and Baire (i.e. second category in itself). The fine

topology associated to ¥

B is finer than the density topology. It

may be described as follows. A function f : € » € is said to be

finely-continuous if given € > o there exists an open set U, with

XB(U) <g, such that f is continuous (in the usual Euclidean sense)

on € ~ U. The fine topology generated by Yg is the least topology

such that each finely-continuous function is continuous, i.e. it is

the topolegy with subbase {f_l{V) : £ is finely-continuous, V 1is a

Euclidean open set}l. In case B = Lz, this fine topology is the
standard fine topology of potential theory, namely the pullback
topology generated by the superharmonic functions.

In terms of the fine topology of Yg! B = 1P, the solution of
main problem (2) may be expressed as follows.

Theorem. Let 2 < p < =, B = Lp, and let X be compact in C.

Then R(X) = A(X) if and only if the fine closure of

T v X eguals the set of fine accumulation points of

C ~ int X.

For p = 2, this is precisely the condition for each function,

.continucus on X and harmonic on int X, to be a uniform limit on X

of functions harmonic on a neighbourhcod of X. Thus L2 analytic
approximation is egquivalent to L” harmonic approximation. It would

be interesting to see a more direct proof of this mysterious fact.

(6.6) The capacity Yo corresponéing to B = ¢ is the least well

understood. It is Kknown as continuous analytic capacity, and is

usually denoted o. It was introduced by Dol¥enko. The associated

outer capacity Y; , defined by

Y;[E) = inf{YC(U) : ECU open}
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is the analytic capacity of hhlfors. Fpr'any set E, y;(E) is at
most the logarithmic capacity of E, with eguality for connected sets.
For any set E, YC(E) is at least the Newtonian capacity of E
(defined using the kernel {zlul}. In particular, YC(E) > {m(E)/n}%_
If Ml(E) <=, i,e., if E has finite outer length, then YC(E{ = 0.
If MB(E) >0 for some B > 1, then YC(E) > 0, so in fermé of' .
Hausdorff dimension the break-point for nullity of Y, occurs at
dimension 1. However, Yo is not comparable to any M- A_referente
for the above facts if [6}. It is conjectured that Y; is comparable
to a one-dimensional Favard content {or integralgeometric content),
calculable in terms of projections of E in almost every direction.
See [12] for an account of progress on this, due tc A. P. Calderon and
S. Ya Havinson.

In principle, Yc may be computed by a method due to P.
Garabedian [22]. It suffices to calculate it for smocthly bounded
compact sets with connected complement. Let E be a compact set with
smooth boundary T, (possibly having several components) and with.

2

Q@ = 8"~ E connected. Let

EZ(Q) denote the Smirnov space

Q ) of all functions £, analytic
in f, with non-tangential
J boundary values in L2(F,ds).
S where ds denctes arc length
on T. Thus EZ(Q) is a
Hilbert space, with inner
Figure 3 product

<f,g> = [ £(z}) gl{z) ds ,
r

and for ¢ € &, evaluation at ¢ 1is a continuous linear functicnal

on E2(Q). Thus there exists a function 2z =+ K(z,Z), belonging to



)
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Ez(ﬁ), such that

f(r) = [ £(2) K(z,g) ds
r

for all f¢ EZ(Q). The function Ki(z,0) is called the szegd kernel.

The formula of Garabedian is

_ 1
K==} = ZﬂYC(E)

The number ¥ (w,=) is the sguare 'of the norm of the functional
£ +£f(=) on Ez(n). Tt can be computed to any desired degree of
accuracy if enough terms of an orthonormal pasis for EZ(Q) are
available. An orthonormal basis can be obtained by the Gram-Schmidt
process from any independent set with dense span. I1f E has COmpO-—
nents E1 et Ek and aj igs chosen in the interiox of Ej(j=l,...,k),
then the set of functions (z—aj)“n (1<jisk n>0) has dense span

2

in E(f). Thus YC{E) can in principle be computed to any desired

accuracy. A lemma of E. Smith {22] shows that the following algorithm

works. Let ug = 1, uge Ugre-s be an enumeration of the functions
-n . - 11—
(z aj) (l<j<k,n20). Let Pyy~ g e U and form the 1n
finite matrix PF =-(pij) (0<icm=, 0cjem). Then K(=,=} 1is the
(6,0) entry of p~l. 1t is the limit of the numbers
dEt(pij : 1<i, 3<n)

det(py4 * 0<i, J<n)

In practice, even if E is a simple kind of set with a small
number of components., the number of computations invelved in the
algo;ithm is enormous, since the evaluation of each inner product in-
volves a line integral. Thus it is prohibitively expensive to obtain
more than two significant figures for yc(E).

The main problem in the theory of uniform rational approximation
is that of understanding Yoo in particular, it is important to

determine whether or not Yo is quasi—subadditive, in the sense that
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Y (EUF) < «ly _(B) + v _(F)}

for some constant «x, independent of E and F. See [4].

§7. PFirst main problem for the hairy class.

(7.1} The first main problem has been solved for B = ¢, and

B = lip a{0<a<1l), but not for B = Lp(2£p<m).

For 40, let spt¢ denote the closed support of ¢, the
closure of {ze¢€ : ¢(z) # 0}. Let D(¢) be the least closed disc

containing spté¢, and let d(¢) denote the diameter of D(¢). Let

Holl, = Well_ + atoy + [1val]_ .

Theorem [24,21). Let B =C or 1lip a(0<a<i}). Let X be a

compact subset of €. Let feB(€). Then £t R(X)

if and only if there exists «k > o such that

| [ £ 3¢ am} < x [[o]], vp (B(&) ~ X)

for all ¢eD.

The condition given in this theorem for f e R{X) may be viewed
as a kind of weak analyticity condition. If spté¢cint X, then it

reduces to

[ £ %3¢ dm =0 ,

so it says that as a distribution f satisfies 3f = 0 on int X.
It is well-known that this forces f to be analytic on int X. At
a boundary point a, the integral condition places a restriction on
f which is more or less stringent depending on how thin € ~ X is

at the point a, where thinness is measured in terms of Yg*

o L s T e e ¥ R







F. See [4].
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(7.2} It cannot be said fhat this rationzl approximation theory is j
a satisfactory state. Not only are there many open problems, major
and minor, but, more importantly, there is no coherent method for de-
riving the known results. Widely varying tools are used to tackle
different classes B. It ought to be possible to develop axiomatic
frameworks, one for smooth B and one for hairy B, within which a.
the central results can be proved. It is ry hope that this article

will prompt others to seek such frameworks.

The following list of references contains only the most recent
sources available to me. Where possible, I referred to a textbook O

monograph rather than the original paper.
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