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HOLOMORPHIC APPROXTMATION IN LIPSCHITZ NORMS

A.G. O'Farrell, K.J. Preskenis, and D. Walsh

1. INTRODUCTION
Fer basic material, see (6,7,11,18,23].

Let X € €° be compact, and let 0(X) denote the space of complex—
valued functions, holomorphic on a neighborhood (depending on the function)
of X. 1In order that ({X) be dense in C(X), the uniform algebra of all
continuous functioms on X, it is necessary that X be holomorphically-convex
(i.e, that X coineide with the set of nonzero algebra homomorphisms of

0(X) -+ €), and have no interior. It is also necessary that X contain no

Bt

nontrivial {i.e. positive—dimensional) analytic subvariety of En, and, for v
this reason, efforts to derive sufficient conditions have centered arcund the
study of totally-real sets. A set AC g™ is totally-treal if each point has
a neighborhood ¥ in ¢” such that AN N is a subset of a C1 submanifold
of c” having no complex tangents. For locally-compact A, this is the same
as saying that each point has a neighborhood K on which thexe is defined a
C2 nonnegative strictly plurisubharmonic function, vanishing precisely on
annN  [9].

Naturally, it is far from necessary that X be totally-real, in
order that 0(X)} be dense in C(X). Having a few complex tangents is a
long way from containing a goptrivial analytic variety. Ian one variable,
where Vitushkin [20, 6] has completely solved the problem, there are examples
of sets X whose C:l tangent space (the space of bounded point derivations
on the quotient of the Whitmey algebra Cl(X) by its radical) has dimension
2 at each point, whereas (X)) 1is dense in C(X). Thus, one is led to
conjecture that not only uniform, but "better than uniform’ approximation
should be possible on totally-real sets, and that one ought also to be able
to handle sets having modest "singular subsets", on which they are not

totally-real.

*
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Range and Siu [17] proved that if X is a Ck totally-real bordered
submanifold, then O (X) is dense in Ck(X). See also 15,8,10,12,1%,23]. 1If,
however, the manifold has even one complex tangent, then Cl approximation
fails, for obvious reasons. This suggests that for X having occasional
complex tangents one could profitably look at the Lip@,X) norms (0< @< 1),
which interpolate between the uniform and C1 norms. For Lipschitzian graphs
X in Ez, two of us proved [14] that if the set of poiats where X has
complex tangents has (Hausdorff) area zero, then uniform polynomial
approximation implies Lip a polynomizl approximation. In [15], we
considered polynomially-convex graphs in ¢2n’ totally-real off a closed

exceptional set E, and we showed that

o) = Lip@,X) N clos 0X). 1)

clos. Lip(a,E)

Lip{z,X)

Our present purpose is to extend this result to cover general holombrphically—

convex sets X.

THEOREM 1. Let the compact set X < ¢® be holomorphically-convex. Let
Ec X be closed, and suppose that each point a € X ~ E has a peighborhoed.
N in & such that X0 N is a subset of a Cl submanifold havips no

complex tangents. Then (1) holds fer 0<a< 1.

The space Lip(a,X) has the norm

sup If1+sup{mx)—-m=x,yéx.x%y},
X

|x-y|®

and 1lip(a,X) is the closed subspace in which

sup JELEIL: 4621 I

0< |xvf <5 [x=y|°

as 54 0.

In case X 1is a bordered submanifold and E is empty, the hypothesis
that X be holomorphically-convex follows from the other hypothesis [8].
This case of the theorem follows from the Range-Siu theorem, since C1
convergence implies Lip a convergence on nice sets.

The compact sets which are {utersections of (Euclidean) Stein neighbor-
hoods form a proper subclass of the holomorphically-convex compact sets. They

are called holomorphic sets. In general, a holomorphically-convex set is

an intersection of projections of Stein Riemann domains [2]. A sufficient

condition for X to be holomorphic is that it be rationally-convex. Another
2

sufficient condition [8, 10] is the existence ofa C strictly plurisub-

harmonic function p om a neighborhood W of bdy X such that
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XN W= {p< 0}. (Note that the interior of X is not assumed empty in
Theorem 1.)

H We prove the theorem by using duality, combining the method of
Berndtsson [1] with the technique of [15]. We remark in passing that
Berndtsson's method also proves the analogue of Theorem 1 for uniform

approximation. Weinstock {e.g. [22]) has proved some cases of this theorem.

The statement is as follows.

THEOREM 2. Let X be a holomorphically—convex set, let E be a closed

subset of X, and let X ~ E be totally-real. Then

0X) = ¢X) N clos

CIDSC(X) C(E) 0¢x). (2)

This result is alse implicit in the constructive work of Henkin and
; Leiterer {10], but the duality proof is simpler. Of course, Theorem 2 is a

corollary of Theorem 1.

2. PROOF OF THEOREM 1

*
' Let T € Lip{a,X) annihilate O0(X), In the same way as in [13] it
suffices to show that the distribution T]C; is supported on E. Briefly, s

o0
this reduction depends on three facts: (1) ¢ functions are dense in

A lip{a,X), (2) there is a continuous extension operator from lip(a,E) to

lip(a,X), and (3) if a lip(a,X) function vanishes on E, then it is a
Lip{(a,X) 1limit of 1ip(a,X) Ffunctions which vanish on a neighborhood of E.

j Thus it suffices to show that each point a € X ~ E has a neighborhood U in
g " such that Tp = 0 wherever ¢ € C0 has support in  U.

: Fix a € X ~ E, and choose a neighborhood N of a sauych that X nN

is a subset of a Cl submanifold M having no complex tangents. Following

| Beradtsson [1), construct kernels K(Z,z} and E(g,z) on U x W, where U

is a neighborhood of a and W is a neighborhood of X. Note the following
points:

(1) For our present purpose, the set V should be chosen a neighborhood of
Cp MM, not € N X. Next, D should be a neighborhood of X whose
holomorphic hull R (which is a Riemanon domain) has projection (R} € ¢",
disjoint from Cr ~ V. This is possible, because a holomerphicalliy—convex
set X has a sequence of neighborhoods Drl + X such that the projection
n(Rn) of the holomorphic hulls Rn of Dn shrink to X. Then, the Cousin
problem should be set up on R instead of D, using the covering by the two

open sets {{n| < 2r}, {|ﬁf > T}.

(2) Rerndtsson refers to Ovrelid [16] for Cl dependence of the various

functions on L . However, Ovrelid refers to Hormander and Bungart. There
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are (at least) three published proofs of the desired facts (solubility of
Cousin and related problems with smooth dependence on a parameter) - by
Bishop [3], Bungart {4], and Weinstock {21]. Of the three, Bishop's method
is the most elementary. The others use the powerful Grothendieck tensor

product theory.

{3) Berndtsson's function H has Weinstock's "omitted sector property", i.e.
for each Y there exists & such that HE,z) takes no value in the sector
fweg:0< iw‘ < &, iIme + b Rew< 0}. (He also needs this fact, to

establish the relation

P30 A S K&,2)duz) =0

on page 125.)
Once the kernels are constructed, we proceed as in [15]. Since K is

a Cauchy-Fantappié kernel, we get

Te =T JRE,2) A2 9&)
2y

whenever ¢ € CO

on 1lip (2,X) by means of a measure § on the set of off-diagonal elements

has support in U. Using the Deleeuw representation of T
of X x X, as in [15], we may write T as

P Loyl ™ T RE ) - K&, A 30 E)dRE,Y).
Ax X U

Now there exists a comstant Ml « 0 such that for all X,y € X,

a

Pl RE - K& e@] =1yl el

i)
for all (0,1) forms having bounded measurable coefficients, where t“l
denotes the total variation of the (u,n) form v . This is proved just as

in {15]. This estimate allows us to apply Fubini's theorem to write TO as

oo xey| KGR duy) A 20 ()
U XxX

. . 2
it remains te show that the {inner integral vanishes for L B aimost

all ¥, and for this it suffices to show that for almost all ¥ there
exist sequences of functions in 0{(X) approximating the coefficients of
K(z,z} 1in an appropriate way, for z € X. This is done by noting that
i « K for z € X, and (using the omitted sector property) using H +m

(m a sufficiently large integer) in the denominator of E, instead of H.

The details go through in the same manner as in [13].




' HOLOMORPHIC APPROXIMATION 191

3. EXAMPLES

(3.1) Let A denote the truncated come
{(rele, re3le) :%EL’E 2, 028 5 21},

and let B denote the torus

’ {(zw) e € |z) = |w] =13 .

If X=A| B, and (ZO’WD) 4 E2 ~ X, then at least one of the polynomials

ZoZny WeWo, EZW <2 W, z3w -23w is nonvanishing on X, Thus X is rationally
0 0 ¢ 70 0“0

convex.
The set E = AN B is the curve {(eie,e3ie)} . The set X~ E ig
totally-real, so Theorem 1 shows that the closure of O0(X) in Lip(a,X) is
i the intersection of lip(a,X) with the closure of 0X) in Lip(a,E). But
! the polynomials in z and 1/z are dense in 1lip(a,E), and since z + ¢ on
X, it follows that ((X) and hence the rationals in C(X) are dense in
c(X).
More generally, let X < Gn' be a compact holomorphically-convex set

which is totally-real off a closed 0(X)-~convex subset E, where E projects

f§§%$ﬁmgh.,ﬂm to area zero in each coordinate. For instance, take E with Hausdorff area
zero. Then O(X) is dense in lip{a,X), for O < a< 1. To show this, it
suffices (in view of Theorem 1 and the lip a extensicn theorem} to show

that the rationals are dense in 1lip{(a,F), where F = S z E is the
j=1
product of the coordinate projections of E. By the extended Hartogs-Rosenthal
theorem [13, p. 287], the rationals in z; are dense in lip(a,sz), for
each j. Thus the closure of the rationals in Lip(a,F) contains the

symmetric product @ CE(G), which is well-known to be dense in Cm(Cn). Since

Cm(En) is dense in Yip{a,F), and Cl(mn) convergence implies 1lip{(a,F)
convergence, the result follows.

Obviously, area zero is the sharpest metric condition possible here,
because positive area would allow possible analytic structure. The tricky
pPoint in applications is the 0(X)-convexity of E.

It seems plausible that the result should remain true in Lipschitzian
submanifolds X in which the (nc longer necessarily closed) set E where

there are complex tangents has all coordinate projections of area zero.

(3.2} Let o be a C2 strictly plurisubharmonic function on a neighborhood
of the boundary of a compact set X C Cn, with bdy X = {p = 0} and with
{p <0} ©D=int X. Then Theorems 1 and 2 apply, where E = clos D.
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Furthermore, U (X} 1is dense in 0(E), in the usual Fréhhet topology, and
hence in Lip{c,E) norm. This is seen as follows (cf. [8, Theorem 2.2(b)]
for a similar argument). Choose a nonnegative ¢ function ¢ on En,
bounded by 1, vanishing only on E. Then for all small constants £ > (,
the function p + €9 is strictly plurisubharmonic, vanishes only on bdy D
and is negative only on D. Since D U{p +ep < 26} contains DU{p < &} ,
it is a (Stein) nmeighborhcod of X. <Call it Uz. It suffices to show that
0(,) is dense in 0(V;), where U

sufficiently small positive constants M << € . For this it suffices (by

=D Ud{p +ep <n} , for all

the functional calculus) to show that, givem K C U; compact, the O(UZ)-
convex hull of K is a subset of U;- Given such a K, choose a strictly
plurisubharmonic exhaustion function u for Uz, with wu=6 on K. Choose

a < 1 such that
p+ Ep = an

on K~1D, and let L={u=0}N{p+ep=2m} . Then p+ep - an >(1-a)n > 0

on L, and 1 is compact, s0 there exists a constant ¢ > 0 such that

¥ =u+clptep- al)

SRR

is positive on L. Clearly, V¥ is a strictly plurisubharmonic exhaustion
funceion for U,, hence. {fu=0} 0 {¥ =0} is O(Uz)-convex. But

K< {u=s0} N {{ =0} CUl,

% so0 we are done. It follows that (1) and (2) hold. Thus, for such sets X,
H the approximation problems in Lip a and uniform norms are reduced to the
i problems on clos(int X}.

f 0f course, Henkin and Leiterer [10, Lemma 3.5.4] have already

established (2), and have gone on to show that

clos 0(X) = {f € C(X}): f 1is analytic om int X} .

c(x)

P E———

This new proof of Lemma (3.5.4) is simpler. We hope to address the problem

b

of proving that

closLip(u’X) 0(X) = {f € lip{a,X}: f 1is analytic in int X}

in a later paper.
We are grateful to Joaquim Bruna, Jecan Castille, and José Burgues for use-

ful conversations on the subject of this paper.
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