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1.' Introduction. Each function fLg(—1,1) has a Legendre expansion
f=22 NP converging in L norm. This paper is about the convergerce of

this- series in bigger norms, for smooth functions f. In particular, we show that:

if feC=, then all term-Dy-term derivatives of the series converge uniformly on
—1, 1], and the rate of convergence of each derived series is faster than 7,
for all & The main result is 2 polynomial approximation theorem, stated in
section 3.

‘We came to investigate the Legendre series because we aré interested in
the simultaneous approximation of a function and all its derivatives by poly-
nomials and their derivatives, A polynomial approximation scheme
on the interval /=(g, b] is a sequence A, of maps from the space C=(I to
the space of polynomials of degree at most n, such that A, f(x)—flx)asn oo
for each x¢/ and each feC=. We seek schemes such that (A, i f for
each & There are many such schemes, as one may easily deduce from the
Weierstrass approximation theorem. We seek schemes which are readily com-
putable and give good results. This raises the question of how to evaluate a
scheme. Since the best uniform n-th degree polynomial approximation to a c*
function approximates it to order n—*, we expect that a good scheme should

satisfy | .
(L1) 7| fO—(Anf SO w0

as n{ oo, for all » and k. This straightaway rules out the Bernstein scheme,
the Jackson schemes, and all positive linear schemes, because of saturation
properties. We could ask for more. Given positive numbers M, such that

(1.2) My H| @ Jla—0
as k1{ oo, we could ask whether there exist A,f such that
(1.3) sup My~ {74 = (A )0 5—0

as ntco. We cal] this the B question. An easier questiori is whether, gi.ven that
(1.4) M Myt =0 B
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for all A>0, there exists a scheme such that
(15) Sup MMyt || fB— (A, f)® [l
k .

for all A>0, We call this the F question. '

It is possible to prove that the best uniform scheme has property (1.1),
as does each best C* scheme. These schemes are nonlinear, and difficult to
compute. The simplest linear unsaturated scheme is the Legendre series expan-
sion. In section 2, we derive some identities and estimates for this expansion,
which show that it has property (1.1). The Tchebyshev series also has this
property, as anyone acquainted with the equiconvergence properties of Jacobi
series might expect. A _

In section 3 we use the Legendre series to prove that the F question has
a positive answer (although the Legendre sheme ifself may not have property
(1.5)). Hitherto, for certain M, (the *nonquasianalytic and logarithmically con-
vex™), this result could be deduced from the work of C.-C. Chou [2], whereas
for other M, (the “quasianalytic”) we had only a rather complicated (unpublish-
ed) proof, based on T. Carleman’s work [1]. The harder B question has
been answered only for some M, and will be discussed elsewhere.

The corresponding results for Fourier trigonometric series of periodic func-
tions are trivial The reason is that the characters exp (inmx) are eigenfunc-
tions of differentiation, so that the Fourler series of f' Is the term-by-term
derived ‘series of f, for smooth periodic £, The action of differentiation on the
Legertdre coefficients is a good deal more complicated, in fact

Cn(f’)=(2n+ 1)(cn+1(f)+cn+3(f)+ e )'l

_ The corresponding problems on the whole ‘real line, involving approximat-
ion by entire functions, are also trivial. The problem with a bounded interval
is created by the presence of the endpoints.

2, Identities and Estimates for Legendre series. The Legendre polynomials
are. given by Rodriguez’ formula: ‘

. 1 an .
Pis)= g =1 120

The functions (#+1/2)"2P, form a complete orthonormal basis for L(=1D),
and hence.the representation f(x)= 3 ¢ f)P,(x) sets up an isometric isomot-
phism between L, and the weighted I, space with weights (n+1/2)7% We treat

functions f and sequences ¢={(cq, ¢, Cg ... ) as interchangeable objects.
Consider the following (possibly unbounded) operators:
'Df:f’, . SC':[O, CU’ Cl',:‘g . ),

Ne=(0, ¢y sy 3Cgr v ) Te=(cy €3 Cae. )
The 4djoint of S is given by
2n--1
Senp= {5 covth |
so that (2N 3))S*=(2N+/)T, where [ denotes the identity.

The coefficient ¢,(f) is given by
2.1 el f)=(r+1/2) -j; fPdx.
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In view of the relations [6, p. 302 and P 308] PL)=1}, P{—1)=(—1)"
P;;1=xP;+(n+1)P,,, we have - -

03 m PAED= [ [ Prdx= O

—-_fi (P4 (n+ NP dx=(cXf)— ne{ NI +1/2)

N=(X—SD.

The recursion relation [6, p. 308] (n+ 1)P,,+1-(2n+1)xP,,+nP,,__1=0 yields
the operator equation X(2N+I)=S(N+I)+ TN, so that the action of X on
sequences is given by Xc={nc,,_1[(2n—-1)+(n+1)c,,+1/(2n+3)}. Consequently,
(.X—-S*)c:{nc,,_lf?n-—-1-——nc,,+1/2n+3}. By (2.3) we have '

(2.4) e 1) = Enma( FHER— 1) = Mi@er+3), rzl.

Telescoping, we get

(2.3)

xniF) : e fyredf) » ol
] =—cfy—Cnad f}— I ,p |
R+ —eo )+ 5 ey f1), nevem
But .
1 1 3 1
el f) =k ffdn === 1= 2 e (PAD
.. —P(—-1)= ":1002}:&1' | _
and similatly ¢y(f)=3Z5 1Cams SO that in each case c(f')=n+1)cs(f

A Cpps{ ) o -+ h @S stated in the introduction.

By (2.1) and the Cauchy inequality, | ¢,( N+ 122N s By (2.4), ites

fated & -times, : : _
gk max | cn+1{f(k))| . 2"‘(n+-k+l,'2)”2 :l‘f(k) 1

; —hS Sk
(2.5) led N EgrEn=3) ... Cr—2k+1) n—1) .. - @Gn—2k+1)
PikR)

By [5, p. 63], the &-th derivative of P Is o—kn+1)(n+3) - . (114 2k— 1)PA),
where P# denotes a Jacobi polynomial. By [5, P 168],

N
| P = ()

Thus :
(2.6) 1P =27 (1) - (2R — Y

We now see that for fixed & c,{f) is of order n—At12 || f® ||, and |} PP |
is of osder n%, hence the series Iy o0 F)P% converges uniformly on -1,

whenever f¢C#+3(—1.1).
The argument for Tchebyshev series goes in the same manner, using the

fact [5, p. 63] that TV =2"*n(n+2). . . (n+2k—2)Pi )% k-1, where T, is the
n-th Tchebyshev polynomial, so that {| 7% || is of order nAk=R,
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These results may also be deduced by using Markov’s inequality 3, p. 137]
to estimate | PP ||, and || 7®[|,.. The same method shows “that the best uni-
form scheme satisfies (1.1),

3. Polynomials Dense in Some Fréchet Spaces of Smooth Functions.

In this section we show that, given f¢C=(/) and M={M,} satistying (14) for

all A>0, there exists a sequence AT of polynomials satisfying (1.5) for all A>>0.

Let /=[a, b) and let M be a sequen’cey of positive numbers. Let F(M, [}
denote the space of all functions fE€C=(/) such that (1.4) holds for all A>0.
Then A(M, 1) is a Fréchet space, with the topology induced by the seminorms

sup MM | B .,

where. A runs over all positive numbers. We may formule’it’e, ‘the. desired result
as follows. _

Theorem. The polynomials are dense in F(M, I}, for each sequence M
and each compact interval f. . '

FL(e!{Jm?)a 1. Let Ny =min{M,_;, M,}. Then F(N, 1) is a dense subset

) LD, T
/ Proof Without loss of generality, we may take /=[—1, 1]. Since N, <M,
it follows that RN, e FAM, 1), : _ r

Let f¢ AM, I). For 0<n<1, define

L+N—nx
&x)=.= T fpa,
. X—n—nx
Then it is easy to check that g ¢ AN, /) and g—f in FAM,]) topology as
1} 0. This proves the lemma. '
Letfa{r denote the interval with the same midpoint as / and o times the
length of /. ‘
Lemma 2. Tke space N usi F(M, of) is dense in F(M, ). e
‘Proof. It suffices to consider /=[=1, 1). Let- f¢ A(M, [) be given,: -
Define g.(x)=f(a~1x). Then one easily verifies that: gs € F(M, of) and go—f
in"F(M, I) topology as a1, v o L
Proof of theorem. By Lemmas 1 and 2, it suffices to show that if
Ny=min{M,_,, M}, and a>1"and f¢ AN, of), then f is alimit of polyno-
mials in AM, I topology. Without loss of generality, we may take a/=[—1, 1],
so that J=[—1+x, 1—x] for some x, O<x<1. It suffices to show that' the
Legendre series of f converges to f in the topology of F(M, /).
. By [5, p. 208], P®(cos8) is equal to . :
%, 5 o, (L=R2—H) . . . (v—#) cos {n—vap—(v+R2}
vl (n+h—1)n+-£-2)., . (R+E—VK2Zsin Gv+%

where a,=("*#"1). Thys

gi—* A=l o a (k1) . (f=V)
sin @ P41 4 (n+k—1)...(n+k—\.')
pl—k k—1 N
= I
|sin g P21 o

For n=k/2 we have (using Stirling's inequatity {6, p. 251])

| P#)(cos 8) |
LE—v—1 k=1, -
T

"t =(1.+k/n)..,(1+k/1)=e*(1+1/2+...-i.-I/fl)",'fI;_(l“l'k/j)e—m _
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éekuwog'mr(k)ﬂewkk-l ﬁ (1’+k/ j)~1eh/j
j=n+1

< etnkk—t—1Rh(Qmy—2g 1k j;§+1 {1 -!—-2'%—{- ;};;-t- ceed
< gl=Mhpkp—r—112 exp { ; =§E+1 B = ela=viepkp—k—1{2gk%n,
For nsk we use
(ERy<(28)"
For 0sv<(k—1)/2, 1<k=n, we have:
(3.2) (n+k-v-—l)(v+k 1)< =M p—v—1) g l—v—1(fp 1)—k+v+1f28(k—-v—1)'/n2v(k__l)v

< ek g (,_:2"_)“”"""“’2?(;3__ 1)V (2e3—1Ynk,

For (k—1)/2sv=k—1, Lgk=n, we have
Fh—v—1yv+k—1 (B (A—y—1) k=1 (f e | Yk v 12glh—v—1)n
(3.3) (e iy =e —1t—v—1)p (k—v-—1) e
; Xem-—y}(k—l)vk 1(k 1)—A—1ﬂe(k-1)“lv§g(7~—2ﬂkﬂk-—1

By (3 1) (3 2), and (3 3),
For cosee —1+n 1 ®), we have ismBl;(?x—x”)””. Combmmg this with
(2.5) and (3.4), we o‘btam '

P (rahr gm0y it

ln‘\";ocn(f)PE;k”:' n(f)P(k)‘é E @n—1)...(2n—2k—1) (2,‘__.”2)*
o 1oocak+3)”2kk—1 3 g %01 300, 2% iy
{uik k1 + f:==22‘k-l:§ S (2'“ —u2)* (2n — —x2)* “f H2
on [—14-%, 1—x] Thus on‘_[—l-i—k, 1—u], we have, for each 7\.>0
268, \#

S N?+1 Ilf‘“‘” Ilm-—*0

?J*M-'” E c (f)PU‘)Ile‘,SSOO(%‘_M2
as k1 co. This completes the proof.

As regards C* convergence, for fixed &, we. would expect that the results
implicit here could be sharpened considerably, it view of P. Suetln s results
{4] for uniform- convergence. ‘

‘Fhe author is grateful to H G. Dales and J. A, Roulier for valuable conversatiou or; the
subject of this paper . ..
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