Capacities, analytic and other.

Anthony G. O'Farrell

(1.1) Let E be a compact subset of €. If f is analytic on $2 ~ E, then it

has the Laurent expansion
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near . The (Ahlfors) analytic capacity of E is the non negative number

v(E) = sup [ai(f)]

where f runs over all functions, analytic on S% - E, and bounded by 1 in modulus.
A compact set E has y(E) = 0 if and only if £ is removable for all bounded
analytic functions, i.e. if and only if given U open and f: U ~ E - €, analytic
and bounded, there exists ah analytic continuation of f to U. For open sets U,
yv(U) is defined as

sup {y(E): £ = U, E compact}.

For arbitrary sets A = §, the outer analytic capacity y*(A) is defined as

inf {y(U): A c U, U open}.

(1.2) Analytic capacity plays a key role in the theory of uniform rational
approximation (or, what amounts to the same thing, holomorphic approximation)
in one variable. Let 0(E) denote the set of functions, holomorphic near E.
For X compact in €, lTet R(X) denote the set of uniform limits on X of elements
of 0(X). Vitushkin showed that a necessary and sufficient condition that all
functions continuous on X belong to R(X) is that

y(U - X) = y(U)
for all open sets U (or, equivalently, for all open discs U). The capacity v,

in combination with another, the continuous analytic capacity a, provides a

similar resolution (also due to Vitushkin) of the problem of which X have
R(X) = {f: f is continuous on X and analytic on int X}.

See [G] for other uses of y in connection with R{X).



(1.3) There are two'important open gquestions about Y. The first is to give
a reasonable "real-variable”" characterisation of the y-null sets. For
instance, Vitushkin has conjectured that v(E) = 0 if and only if aimost all
projections of E on lines have outer length zero. Thanks to some work of
Havinson, Calderon and others, we know this is true for o-rectifiable sets,
and for those totally unrectifiable sets known to be y-null [M]. This pro-
blem is particularly irritating becuase the bounded analytic functions are
practically the only "reasonable" class of analytic functions for which the
null sets lack a real-variable description. For instance, see [C]. The only

significant exception are the Smirnov E_ classes, but they do not count,

P
because, when defined, they have the same null sets as vy[H].

The second problem is whether vy is quasi-subadditive, i.e. whether

there exists a universal constant « > 0 such that

v(E1 U Ez) < x{v(E1) + v(E3)}
whenever E; and E, are compact in €. There is a sizeable logjam in uniform
holomorphic approximation theory because of this problem. For example, if
£ is compact, with y(E) = 0, and f:52 » ¢ is continuous, do;théfe'egistfunctions
fn:S2 - §, tending uniformly to f on S2?, holomorphic wherever f is and on a
neighbourhood of E? If y is quasisubadditive, the answer is yes. If y were
subadditive, one could define a special topology (the "ana]ytichine topology")
on {, finer than the Euclidean topology, that ought to be especiaily helpful
for studying R(X). This topology might provide the real answer to E. Borel's

dream of the perfect notion of analytic function.

(1.4) The most penetrating work on the subadditivity problem is in [D].
Davie showed that quasisubadditivity would follow from the statement:

Y*(E UF) < v(E) + «(E)y(F)
wherever E is compact and F is open, where «(E} > 0 is independent of F. We

know that



Y{E UF) < v(E) + «(E)v(F)
wherever £ and F are compact. It may not seem like much of a gap, but there
it is.

In what follows, we shall present another formula for v(E)}, and use it
to cast a 1ittle light on the subadditivity problem. It will become clear
that subadditivity is just another version of the only real "probiem" in
analysis, which is how to handle
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(2.1) Dolzenko generalised the concept of analytic capacity. Suppose B is

a Banach space of functions on {, such that D= B, D e B*, and the inclusions
are continuous. Here D = D(¢,0) denotes the space of test functions. We
assume that, if B has a predual B,, then D < B,, continuously. Also, we

assume f € B n-?'E B. The analytic B-capacity of a compact E = ( is

yB(E) = sup laj(f)i

where f runs over all functions in the unit ball of B that are analytic on
£~ E.

Examplies are B = Lp (wrt area measure L2?), C (for continuous and
bounded), Lip_a, 1iﬁa, BMO, . VMO, Ck (= bounded continuous derivatives up to

order k), some weighted L_ spaces, Sobolev spaces, etc.

P

(2.2) The number a,(f) equals

g%{J f(z) dg

r
whenever r is a rectifiable contour around E, in the usual sense. A more

entertaining formula is

a(f) = -1 | f@) Bara <L X

-3 -



where ¢ € D is any test function with ¢ = 1 on a neighbourhood of E. This
follows from Green's formula. It suggests the natural way to generalise Yg
from the Cauchy-Riemann operator to other differential operators.

Let E be a compact subset of Rd

, let B be a Banach space of functions
on §, and let L : E(]Rd ,0) - E(]Rd,lI) be a linear differential operator
with ¢ coefficien?s. Choose ¢ € D(Ifi,m) with v = 1 on a neighbourhood of

E, and define

Y;(E) = sup | j £(x) L*o(x) dL%(x)1,

where f runs over all elements of the unit ball of B which satisfy Lf = 0
on Rd ~ E, in the (weak) sense of distributions. The value of the integral
does not depend on the choice of ¢, for such f. This concept embraces those
capacities used by Hedberg, Polking, Bagby, and others in connection with
various approximation problems. The classical Newtonian capacity is

Yﬁ:’ where A is the Laplacian.

(2.3) The technique of the dual extremal problem is based on the following

fact, which may be proved by using the Hahn-Banach theorem.

Duality Lerma. Let Bo be a subspace of a Banach space B, and let A € B*.

{1) Then g
¥
sup {|Af] : f €B_,UBll; & 1} = dist (A,81).

{(2) If B has a predual B,, if B_is B,

for some subspace By < By, and if A € B,,

then

sup {|Af| : FEB , IIfll, <1} = dist (A,B;).
o B = 1

This Temma allows us to turn an extremal problem in one Banach space intc a
corresponding problem in the dual, or in the pre-dual (if there is a pre-
dual). This technique has been put to good use in the past, but still has
plenty of energy left. Our present purpose is to apply it to get formulas

for the kind of capacities described above, so as to cast some light on the



subadditivity problem.

(2.4) Applying part (1) of the Duality Lemma gives the formula

L
= i * -
YB(E) 12f HL*y SHB*

where S runs over all elements of B* such that

Fes }-»sr':o.
Lf = 0 off E

If B has a predual B, (and De=» B, is continuous), part (2) gives the

nicer formula

yH(E) = inf HL*y - L*gli :
B ¢ x

d

where ¢ runs over ail test functions supported on R® ~ E. Recalling that ¢

is any given test function with ¢y = 1 near E, we conclude that

YL(E) = inf {liL*¢lig : ¢ €0, ¢ =1 near E}.
B . *

(2.5) Applying this formula to classical analytic capacity, we get

1, 3%
E) =< inf (I, : ¢ €D, ¢ = 1 near E}.
v(E) = 2L ¢ ¢

(2.6) Applying it to the analytic capacity associated to B = Lp (the
"analytic p-capacity" of Sinanjan), we get
(E) =L inf (12, : 6 €D, ¢ =1 near E}
YL‘ T oz L " s § =
P q
for 1 < p <, where q is the conjugate index to p. This B has the property

that B is mapped continuously to itself by the Beurling transform:

()2) = 1 [l aia(y),

where the integral is interpreted as a limit in B norm of principal value



integrals of smooth approximations to f. The theory of the continuity pro-
perties of this and similar integral operators is known as the Calderon-

Zygmund theory. The operator T has the property that

T
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for all ¢ € D, so that if T maps B - B continuously, we deduce that g is

comparable to the real-variable capacity

3¢ . -
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Apart from Lp {1 < p < =), the spaces Lipe and BMO are Beurling-invariant
dual spaces, so this argument also applies to their analytic capacities.
In all three cases, this reaI-vériab]e formula gives a proof of quasi-
subadditivity. For instance, for BMO we get

vgup(E) ~ inf {n|ve] “L1: $ €D, ¢ = 1 near E},

where ~ means "is within constant multiplicative bounds of". It makes no

difference to restrict to real-valued ¢, and we get

Yayo(E) = inf { l$ll y g3 6 €05 0= 1 near £}

inf { thlw1,] :hew?', h=1nearE)

N

inf {Ilhli y ;: hE w1’1, h > 1 near El;

W

which is obviously subadditive. Here N]’] denotes the Sobolev space of L]

functions with L1 distributional derivatives. See [V].

(2.7) This method extends to other hypoelliptic operators. Suppose L* has
an inverse P : D -» E such that PL¢ = ¢ whenever ¢ € D. For instance, the
Cauchy transform does this for E% » and, more generally, convolution with a
fundamental salution does it for elliptic constant-coefficient L.

Suppose L has order m. Denoting the partial derivative associated to

the multiindex j by Dj, we may ask about the continuity properties with



respect to B of the operator DjP, for [jI <m. If all these map B, con-

tinuously into By, then YE(E) is comparable to the real-variable capacity

inf { X 1ID.¢HB : ¢ €0, ¢ =1 near E}.
ljlem 3 O

This works for constant-coefficient elliptic operators, with B = Lp (1 < p<e),

Lipa, BMO, Lip(k+a), some Sobolev spaces, etc. The associated yt are then

subadditive.

(2.9) If L has real-valued coefficients, then y; is a real-variable capacity

even if B is not Beurling invariant. For instance,

YU (E) = inf {1l 861l : ¢ €D, ¢ =1 near E}
]

inf {l[M:lIL1 : $€D, ¢ =1 near E, ¢ real}

inf {IIAtbllL1 : ¢ €D, ¢>1 near kE, ¢ real}.

This is pretty clearly subadditive.

(2.10) The upshot is that among the usual crop of elliptic operators L and
dual spaces B, the case L = 3 and B = L, is practically the only one we can-

not handle with ease. And we cannot handle it at all.
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