Rabbit Mathematics

Anthony G. 0'Farrell

1. Fibonacci numbers. Leonardo of Pisa, also known as Fibonacci, intro-

duced the Arabic numerals 0, 1, 2, 3, ... to Europeans, in his book,
Liber abaci (1202). His most famous invention is the sequence
1,1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

of Fibonacci numbers. You can arrive at this by imagining what would happen

if you started with one pair of newborn rabbits, and assume that

(1) the time from birth to maturity equals the gestation period, and

(2) each mature pair produced a new pair at the end of each period. Ignor-
ing all further possible complications, the initial pair mature in one
period, then produce another pair at the end of the next period, giving
two pairs. At the end of the next period you have a new pair from the
original pair, making 3 in all. At the end of the next period you have
2 new pairs, making 5, and so on. |
If we denote by Yn the number of pairs at the end of the n-th period,

we see that

n
—

o= (1.1)

Yo=Y, Y (1.2)

The equation (1.2) is an example of what is called a recursion relation, or,

sometimes, a difference equation. The equation (1.1) specifies the initial

conditions. If we vary (1.1) without changing (1.2), we arrive at other
sequences that behave in the same kind of way as the Fibonacci numbers. For

instance, if you take



Y1

1]
(%]
-

you get the sequence

1, 3, 4, 7, 11, 18, 29, 47, ...
of Lucas numbers. In terms of rabbits, this is what happens if you start
with one mature and two immature pairs.

Those of you with computers may enjoy writing a program which takes
Yo and Y, and produces Y, Y3, Y4, and so on. If you do this, you wiil
notice that the sequence usually grows extremely rapidly, and it is impractical
to get Yn for large n. Indeed, even for quite modest n, 1ike 500, the numbers
usually overflow.

If you get the computer to calculate the ratio LIVA SO it is remark-
able that this invariably approaches a limit of about 1.6.

I will have more to say about calculating Yn, and about this ratio,

further on.

2. Difference equations Let a, b, and ¢ be any constant (real) numbers,

with a #+ 0, and consider the equation

a Yn+1 +bY +cY =0 (2.1)

This is the general type of a "second-order constant-coefficient homogeneous
difference equation". It reduces to the Fibonacci examplie (1.2) when
a=1,b=c=-1,

(Some of you are familiar with the properties of second-order constant-

coefficient ordinary differential equations

d?y dy i}
aw+ba-£+cy—0.

You will notice that there is a complete formal analogy between what I am

about to show you and the theory of such differential equations.)



Let V denote the set of sequences {Yn\(n =0, 1, 2, 3, ...) which

satisfy (2.1).

If Yé and Yﬁ are two sequences belonging to V, then their sum

Yé + Yﬁ belongs to V. For,

1 1 1. =
a Yn+1 +bY +c¥, =0,
2 2 2 -
a Yot by +c o1 =0,
s0,adding,
1 2 1 2 1 2 =
a(Yn+] + Yn+1) + b(Yn + Yn) + C(Yn-l + Yn-l) = 0.

Further, if Yn belongs to V and o is any real number, then uYn belongs

to V. For, on multiplying across in

|
o

ay +bY +c Yo-1 °

n+1
by o, we obtain

ala¥ 1+ b(aYn) +cC (aYn_-[) = 0.

n+l
Thus V is a vector space over the real numbers.

Let Yé, Yﬁ, Yﬁ be three sequences belonging to V. Then we can choose

real numbers a, B, v, such that

1]
o

2
aYé +BY + ng
(2.2)

I
<o

1 2 3
“YI + BY] + le =

(This can be done because (2.2) just says that the vector (a«, 8, v) is per-

pendicular to the two vectors (Yé, Yi, Yg) and (Y}, Y2, Yf)). It then

follows from (2.1}, and induction, that
1 2 3 =
aYn + BYn + YYn 0

forn=2,3,4, ... .



Thus any three sequences belonging to V are linearly related, so the
dimension of V is at most 2.

On the other hand, the sequences

2
1 1 1 b I _ b

Yo=0, Y =1, ¥, =- g0 Y3 = -Clg + a2, ...
2 2 2 _ ¢ 2 _be

YI=1, Y] =0, Yy = -a Y5 = g2,

provide 2 linearly independent solutions of (2.1). so the dimension of V is
exactly 2.

This means that, whenever we find two independent solutions Y; and
Yﬁ for (2.1), the general solution is

= vl 2
Yn = aYn + sYn

for constant o« and B.

3. Explicit solutions. Suppose we look for a solution to (2.1) in the form

Yn = A

for some constant A. Substituting, we obtain

a ™ i o -, (3.1)
Assuming x # 0, we get
axZ2 +bx +¢ =0, (3.2)
- 2 -
\ = b % Vga dac (3.3)
= h1s Az, SBY.

Turning it around, we see that whenever ) satisfies the quadratic (3.2),
¥, = A" is a solution of (2.1}). So as long as X # X, we get the general
solution of (2.1) in the form

_..n n
Yn = oAy 512.



4. Fibonacci again. Let us go back and apply this to the Fibonacci

sequence. The difference equation was

Vo1 ~ T - Yp-1 = 0s

so the quadratic is

22 -x2-1=0.

This has the roots

N 1z /5
1202 7 T

Notice that Ajxp = -1, i.e.

1+/5 _ _ (1-5\1
-z -2 ] ¢
According to what we learned just now, the general solution of (1.2) is
1+ /Y /1 - /BN
e () () ()

for constant o and 8. Putting in the initial conditions Y0 =Y, =1 for

the Fibonacci numbers, we get

133"'89
Ve o) o)
=1t 5 _ 5 -
25 25

and we arrive at

B - ()

This is a startling formula for whole numbers: For instance, it says that

- L5 - (557

Of course, what happens is that when you multiply out the right-hand side,

the /5's all drop out and the 2's under the line all cancel,



You might 1ike to try your hand at finding the corresponding formula
for the Lucas numbers.
1+/5 . . .
The number ———= s about 1.618, so its powers grow rapidly. For

instance,

100
(UZ_E’) = 7.9 x 1020,

By the same token, its reciprocal lfii%;L has rapidly-decaying powers.

Thus in formula (4.2), the second term on the right is rapidly dwarfed by

the first, and we get

:
Y= -‘/—l_ (J—JZ’—E)M (4.3)

to a large number of significant figures. For instance, already by n = 20,
(4.3) givesYn correct to the nearest integer.

Those of you who have written the program suggested above, can add
the calculation of (4.3), and compare.

Applying the same reasoning to (4.1), we see that unless a = 0, we

have
Y - 1 + 5\0
n a —2—"—'
for large n. This explains how I could predict that the ratio of successive

terms would "always" tend to about 1.6. I was gambling that you would not

hit upon something like

v o=1, v =13 - - o.eis03

as initial values; and even if you did, I was relying on roundoff error to

make you drift off the exact solution

that would result. Notice, however that this solution is quite different



from the typical ones. It alternates in sign, and instead of

Y

ntl . 1+ /45
Yn z
we have
Yorl _ -2
Y 1+ /5

Notice also the superiority of mathematics over brute force. Your
original computer program is completely outcliassed by formula (4.3), when
it comes to calculating large Fibonacci numbers.

5. The golden ratio. The ratio l—%}iﬁi = 1.618 ... is known as the

golden ratio. We found it lurking in the Fibonacci numbers, but in fact

it crops up all over the place. Indeed, it crops up in crops: It first

arose long ago when someone considered

— b —
te a > [—Cc—

figure 1
the following problem: Make a rectangle, a by b, so that removing the
square on the short side a, leaves a similar rectangle a by c. In other

words, we want (figure 1)

a _
P -

mlo

Since ¢ = b - a, this becomes

a
5 -

oo
]
-

Lettingx = D/,, this gives



A% -a-1=0,

so A is the golden ratio.

figure 2
The wonderful thing about this is that if you have a rectangle with

this ratio (a golden rectangle), you can continue the process of removing

squares indefinitely, obtained an infinite sequence of diminishing golden
rectanges, vanishing to a point (figure 2). There is a curve (the logarithmic
spiral) which fits neatly into this picture, This curve has been observed
in numerous things that grow, such as sunflower heads, snail shells, the
pattern of leaf buds on a stem, and animal horns.

The golden ratio is supposed to be particularly pleasing to the eye.
It occurs in a number of places in Leonardo da Vinci's notion of the per-
fectly-proportioned human body. For a long time it was the preferred ratio

for (rectanqular) paintings.

6. Exchange reserves. The general theory of constant-coefficient difference

equations has many uses besides the Fibonacci example. Just as surds like
/5 can slip into a problem about whole numbers, so complex numbers can slip
into problems about real numbers. Here is an example, completely different
from the Fibonacci sequence, which illustrates these points. It concerns
exchange reserves.

Imagine, if you will, a country with exchange reserves. Let Rrl stand
for the level of the reserves at the start of time period n. Let Mn be the

payment for imports in period n, and Xn be the income from exports. Then

R D 4 v "



Assume that there is a simple relationship between imports and reserves:

Mn =a+h Rn~l'

This just means that imports have a base level &, and then vary in proportion
to reserves in the previous time period. In other words, if we find ourselves
flush with cash, we splash out, otherwise, we rein in. The n-1 aliows for

the lag between orders and invoices. Now we have

R, -~ Ry +bR ;=X -a. (6.1)

n+l
This is a second-order, constant-coefficient difference equation. It doesn’t
quite fit the pattern of (2.1), becuase it is not homogeneous, i.e. the right-
hand side is not zero. This is not a major problem, however. If Rn = Pn is

any particular solution to (6.1), then the general solution is

Ry =Y, + Pp, (6.2)

where Yn is the general solution to the associated homogeneous equation

Yo=Y +bY =0 (6.3)

n+]

The quadratic associated to (6.3) is

A2 - A +b =0,

and the roots are

A _ 1 /1 - 4b

152 = ——a—— .

Now these are only real if b < }. This is not observed in actual practice.
In practice b is greater than 1. This means that if we find ourselves with

reserves of fifty million, we increase expenditure by more than fifty million.

For such b, Tetting

b -

<
]

we have
Apsrz = 3(1 4 vi) = r(cose + i sing),

where



r=3%+1+v2=1/b, 6 =arctan 2v.

The general solution of (6.3) is

Y = aA? + 512
for constant o and 8. Using de Moivre's theorem, this becomes

Yn =" {(ac + B) cos né + i(a - B) sin nel.

This can be written in the form

N

Y =vbZ cos (ne + ¢) (6.4)

for constants y and &. Thus the general Yn is oscillating, with expon-

entially growing amplitude, bn/z.

To get the full solution (6.2}, we need some particular solution
Rn = P, for equation (6.1). This can only be done in closed form if we
make some assumption about the explicit form of exports Xn- For instance,

let us assume that

n
Xn cg

i.e. that exports grow at an exponential rate, increasing by a factor g in

each period. The equation (6.1) then becomes

I
Rosq = Ry + DR 3 = cg” - a. (6.5)

Let us try for a particular solution of the form
Rn=Agn+B.

We get

n+l _ 1

Ag Ag" + bAg"! + bB

Cg = d,
A{g - 1 +'g} gn + bB = cgn - a,

so a solution is obtained if

1

}
1]
-

A{g - 1 + g} = ¢, bB

or, in other words, if



Cg’ B = -
92-g+b

a
"5" -
This particular solution is

R = cg _ 4
N gZgib D

Putting it all together, we get the general solution for (6.5) in the form

n n+1

=vb % 9 .2
Ry=vb “ cos(ne + ¢) + 97-g%b b

The behaviour of this is influenced to some degree by the initial conditions
(which determine y and 6), and to a lesser extent (in the short term) by the
ratio 3/p of fixed discretionary imports, but the main thing that determines
the long-term behaviour is the ratio of b% and g, or equivalently, of b and
g2. If b exceeds g2, the reserves eventually begin to oscillate wildly
between ever-increasing bounds.
If g% exceeds b, then the reserves eventually settle to a growth rate g,
equal to the rate of growth in exports. Thus this (extremely over simplified)
model dictates that discretionary spending must be held to a level below
g2R, where g is the rate of growth in exports and R is the level of reserves.
For example, taking the period equal to a year, if exports grow at
4%, then g = 1,04, so discretionary spending should be held to 1.08 times

reserves.
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