i BheR i et Hahi 5T s e e g s e e

INSTABILITY PAIRS
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ABSTRACT
Let u be a capacity on RY ie. a translation-invariant non-negative non-decreasing
Borelian set function. We shorten uB(a, r) to u(r). Let A be a content on RY ie. a
countably quasi-subadditive capacity, and asssume A(r)/u(r) > 0 as r | 0.
Conditions are given on (A, g) which are sufficient to ensure that each of the following
hold, for each Borel set E and A almost all ae R% (We abbreviate En B(a, r) =
Ea, r).)
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The results are applied to specific examples.

§1. An instability theorem is a bit like a density theorem. The ordinary density theorem
for Lebesgue measure . states that, given a Borel set £ = R¢ we have

lim.SW(E nB@,r) _

1
rio FBla, 1)

for £ almost all a € E. The density theorem for a-dimensional Hausdorff content (where
0 < a < d)[2,(2.10.19)2)] has
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for M almost all a € E, where x; = x;(a, d) > 0. The instability theorem (proved below)
for the pair (¥4, M°), states that at % (not M) almost all points a e R’ at which (1)
fails, we have

M*(E ~ B(a, 1)) _

d
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Here are some classical examples of instability theorems.

Vitushkin’s theorem [13, p. 190] (let y denote the (outer) analytic capacity of Ahlfors).

Given a Borel set E < C, we have

limy(E—mM= 1 or limw___

rio r ri0

0

Sfor &? almost all ae C.

The Lysenko-Pisarevskii theorem [9] ( a weaker version was first found by Gonchar; let
C denote harmonic capacity on R®. Given a Borel set E < R3, we have

lim C(E n B(a, 1) =1 or lim C(En B(a, r) _

rjo r rio r3

0

Sfor 3 almost all ae R®.

Gonchar’s theorem [7, theorem 2, p. 161] (let Cap denote logarithmic capacity on C).
Given an open dense set E = C, we have

liminf 2P ECB@ D) o, Cap (B nB@ ) _
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r

0

Sfor Z? almost all ae C.

Melnikov’s theorem [10, p. 123]. Let E be an open set in C, and 1< B < 2. Then

limsupw’—r» >0 or limsupw < +

v e 0}
rl0 r ri0 r

Sfor M? almost all ae C.

Hedberg’s theorem [8, p. 309, theorem 9] (Hedberg has a capacity Cx, on RY
corresponding to a convolution kernel K and an index ge[l, o]). Let £ < RY be a
dense Borel set. Then the following two conditions are equivalent:

(@) Cx,[(En B) = Cy,(B) for all balls B,
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Polking’s theorem [12, theorem (2.6)] (let b,,, denote the L, Bessel potential of order m
on RY). Let E = R? be a dense open set. Then

. b, ,(En Bla,r))
N bB@n

if and only if

lim sup bud E 0 Bla, 1) >0
rlo rd

for L4 almost all ae R

You get the idea.

§2. For the purposes of this paper, a capacity on R?is a translation-invariant non-negative

non-decreasing Borelian set function on RY ie. u is a capacity if
<

(1) w2 -0, wl,

(2) E < F= uE < uF,

(3) ma+E)=pE,VaecR! VYV Ec RY

4) (a, r) = W(E N B(a, r)) is a Borel function, whenever E is Borel.

A capacity A is a content if it is countably quasi-subadditive, i.e. there exists k(1) > 0
such that

AU E.<x ) AME)
n=1 n=1

whenever E, is a Borel set for n = 1, 2, 3,... . If p is a capacity, we abbreviate uB(q, r)
to u(r), abusing the notation. We say that (4, ) is a pair on R if A is a content on R<
i is a capacity on RY and A(r)/u(r) — 0 as r | 0. The capacities of practical interest fali,
up to bounded equivalence, into three (overlapping) groups.

(1) Analytic capacities in the sense of Dolzenko. Given a norm | - | on C¥, the
capacity 7-(E) of a compact set E is sup |a,(f)| where f runs through all functions analytic

off E, with ||fllr < |, and f(2) = a0+fal/z+... near co. For open U, A{U) = sup {y:(E):
E c U, E compact}. For arbitrary E, y;(E) = inf {y-(U): E = U, U open}. The analytic
capacity y corresponds to the sup norm, and the analytic p-capacity y, corresponds to
the L,(&#%) norm.
(2) Kernel capacities. Given a continuous function K: R* — (0, o) and a number
pell, o], the capacity Cx,(E) of a Borel set E is sup uF where u runs over all positive
H

Borel measures on E such that the potential

() = j K(x,y) du(y)
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belongs to the unit ball of L,( ™). For arbitrary E < R?, Cx(E) = inf {Cx (B): E < B,
B is Borel}. The Frostman capacities C* [4, 3], including Newtonian capacity C, are
examples, as are the more general capacities Cy, and b, used by Hedberg and Polking.
The logarithmic capacity Cap fits a minor variation of the definition — namely replace
‘positive measures” by ‘measures of total mass zero’ [4].

(3) Hausdorff contents. These are contents such that

ME) =inf Y uB
R PR
where &7 runs over all countable coverings of E by balls. The contents M* and 577 are
examples.

The capacities &, %,» Cap, M?, C® are all contents, with the possible exception of
¥, = 7. It is an open problem whether y is quasi-subadditive. However, 4 = y does have
the following weak quasi-subadditivity property, which we call property (W):

there exists a constant x;(u) > 0 such that

ME)< K, ) HMENB)
Bsy

wherever Fis a countable covering of E by (closed) dyadic cubes.
This property, for 4 = 7, is a consequence of Melnikov’s estimate [5, p. 230].
Consider the following properties that a pair (¥, g) might have, for each Borel set E:

(A) llmsupw>0 or llmsupw< +

rio u(r) rL0 Ar)

for A almost all ae RY;

. E n B(a, . )
(B) lim mfil—(—-(—\——(a—L)2 >0 or llmw =0
rio u(r) ri0 u(r)
for A almost all a € R?;

ME ~ Bla, 1) _ E B, ) _

limsup ——~~ = + 1i =0
© lim p ) © or ’1lng 0
for A almost all a e R?;
(D) imAEnB@ ) o HENBa )
110 u(r) rio ur)

for A almost all a € R?.

We say that (4, y) is an instability pair if it has property (4). If, in addition, it has
one or more of the other properties, we call it a B-instability pair, a C-instability pair,
a BC-instability pair, etc., as appropriate. For instance, if (4, g) is a BC-instability pair,
then we have that

lim inf HE 0 Ba, 1)) >0 or lim HEC B@ ) _

0
r10 u(r) rio A
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for A almost all a, whereas if (4, y) is a BCD-instability pair, then we have the dichotomy
B(a,
i MENB@ ) . pEnB@n) _

im = im =70 0

for A almost all a.
Summary theorem.

(@) (MP, ) for1 < B <2, (M, MY forO<a<f<d,
MP,CY) for0O<a< B<d (M, y,)for2<p<

-2
and ‘DT < B < 2, are instability pairs.

B (& 1) (LY Ci), (A, by), (L4 M), and (L7, C°) are BC-instability pairs.
() (L2 y) and (£, C) are BCD-instability pairs.

In tHe remainder of the paper, we discuss properties (4)-(D) in turn, and explain how
to go about proving (), (f), (7). First, in § 3, we present and prove a version of Melnikov’s
covering lemma. In § 4 we discuss instability and B-instability. In §§5-6 we deal with
properties (C) and (D).

To date, most of the applications of instability theorems have been in connection
with approximation theorems. Essentially, an instability theorem allows us to relax a
hypothesis of the form

WEN B, 1)

0 A—ae. on F
ur)

lim (sup/inf)
rlo
to

ME N B(a, 1))

20 >0 A—a.e. on F.

lim (sup/inf)
rlo

Alternatively, it allows us to strengthen a conclusion of the latter form. There are examples
in the papers already cited. As another example, take the BC-instability of the pair (#%,

M*). In a future paper, it will be shown that for 0 < ¢ < 1 and p > —2—, a function

l—a
fe Wi(C) (a Sobolev space) is a Lip a limit on the compact ¥ < C of rationals, if and
i) . > .
only if éj (a) = 0 at £? almost all points ae X at which

. M7YBla,r)~ X
lrlff)l rite 2 - 0

Applying the instability, this condition is equivalent to the a priori weaker condition that

%: (@) = 0 at ¥? almost all points ae X such that

S
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1+aq, i ~ ¥
imMBenN~H _,
ri0 r2

§3. We say that a capacity u on R? is approximately homogeneous if

sup Hrs) _
r-op(2rS) T

for any (or, equivalently, each) cube S. The capacities L Mo, C",‘ 2 <p<ow)yC
are approximately homogeneous; but Cap is not.

Following [11, p. 405], we say that a family.%” of balls (resp., dyadic cubes) is (1, &)-
invulnerable if

Y, uB < kuD
Bey

BcD

for each ball (resp., dyadic cube) D.

<
Melnikov’s covering lemma (cf. [10, lemma 2; 6, lemma 4.5; 2, (2.8), for ¢ = 4: 9, lemma
1.1; 11, p. 405]). Let p be an approximately homogeneous capacity on R4, having property
(W). Then there exist constants k; > 0 and k, > 0, depending only on u and d such that
each bounded family Zof balls of positive radii contains a (u, i;)-invulnerable subfamily
S, such that

Y. uB 2z k() S
8

Proor. It suffices to prove the dyadic analogue, since p is non-decreasing and has property

(w).
Let.% be a bounded family of dyadic cubes. Let

H(rS)
a = su
SO 1(2rS)

and let x; = (1—a) 7%, x5 = x(1)”". We shall construct a subfamily ., < & which is
(4, xs)-invulnerable and satisfies

DI (YY)
Be%

Step 0. Let k5 = (1—a) . If ¥is (u, ky)-invulnerable, take & =.%. Otherwise, choose
a dyadic cube D', of maximal side such that

Y uB > xuD.
Bsy

B< Dy

fi
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This is possible because the number of candidates of a given side is necessarily finite,
and is zero for large enough side. If &~ 2D?" is (u, K;)-invulnerable, then stop (this
step). Otherwise, choose [, of maximal side such that

Z UB > Ky(D).
Bey~ 20

BcD2

Necessarily, uD’, < uD’,, and the interiors of D', and D', are disjoint (for dyadic cubes

this last is equivalent to saying that neither contains the other). Continue. If the process

does not stop, then uD’, | 0, since the number of cubes of each side which might become

D',s is finite. Thus, if a cube Be & is not removed in some 2°" before side(D’,) falls

below side(B), then it is not removed at all. Let D, be the least dyadic cube containing

.5 2P The cubes D, are the first generation composites, and the cubes of &=~ { ) 22»
n

are the first generation integrals. Together, these composites and integrals make up the
whole first generation, which is a (u, y)-invulnerable family. Set the initial cluster

Sfactor f (D’t) of each composite equal to 1, and the cluster factor k(B) of each integral
equal to 1.

Step n. Suppose that D is an nth generation composite cube with initial cluster factor
f(D)e[l—a, 1]. Choose a subfamily .7 = & n 22 such that

: u3D)
B Az
fDub < ) HB< {f(D)f (D) } uD.
Be f
This is possible since
Z uB > uD
Be 5/
BcD

and the cubes belonging to.% n 22 have at most half the side of D. The family. 7 =.7(D)
is the (n+ 1)st generation cluster associated with D.

Repeat step 0, with 7 replaced by.7. The composites D, are called (n+ 1)st generation
composites, and the integrals, (n-+ 1)st generation integrals. Note that

Y uB < (1+ a)uD < xuD,
Bey

so D itself is not composite this time. The final cluster factor (D) of D is f(D).uD/
Y uB. This is also the initial cluster factor of the new D,, and the cluster factor of

8. 7

the new integrals. Note that A(D) e[l —a, 1].

The process may stop after a finite number of steps, or continue indefinitely. Since
an (n+ 1)st generation composite is always smaller than the nth generation composite
that contains it, each element of & either becomes an integral cube or is dropped in the
formation of some cluster. The integral cubes of all generations form the family &.
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If D is a composite (of any generation), then a calculation shows that

fDwb = Y kB)uB.
Beyl

BeD
Thus

A< Y uC

C first generation

=K, » k(BuB
Bey‘

< K Z /lB
B8e S

Let D be any dyadic cube. If D contains any composites, take m minimal such that
D contains an mth generation composite. Each composite C contained in D is contained
in some mth generation composite, so we compute

uD > k7' > uB
Bc D
B mth gen.

=k}l T B+ TS Y KEWE

B mth gen, B mth gen, B Eyl
B integral B composite BB
-2 ;
= K Z ﬂB 3
BcD
Be 54

as required.

§4. We say that a content A on R’ has a density theorem (resp., strong density theorem)
if, given a Borel set E = RY,

ME n B(a, r)

A(r) >0,

lim sup (resp., lim inf)
rlo ri0

for A almost all a € E. So £ has a strong density theorem, and M* has a density theorem.
However, M* does not have a strong density theorem [2, (3.3.21)].

We say that the pair (A, p) has property (E) if there exists x3: (1, 00) — (0, o) such
that given a (4, o;)-invulnerable family .~ of balls, with o; > 1, and given a Borel set
E < RYand a number § > diam E such that

u(9)
WE n B) > Eﬁ.,1B, VY Be &,
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it then follows that

uE> Kg(O'] I;'Eg z AB

This property is a mild kind of superadditivity.

Instability lemma. Let (A, p) be a pair on R? such that A is approximately homogeneous
and has a density theorem (resp., strong density theorem). Suppose (l, }) has property (E).
Then (A, p) is an instability pair (resp. a B-instability pair).

Proor. Fix a Borel set Ee R Let E; denote the (Borel) set of those a € R? at which

: H(E N B(a, 1))
lim sup —————= = + 0.
’lfl(‘)l up /'L(r) o]

At A almost all points a of E;, we have

4

lim sup —-———————-——MEO 0 B, 1) >0

ri0 Alr)

(resp., lim inf M

him 20 > 0).

Let a be such a point. We shall prove that

lim sup (resp., lim inf) ;i(_E_m_I_Q(ir_))

> 0.
rio ri0 u(r)

This will suffice. Fix 7 > 0 and § > 0 with

AB(a, 6) n Ey) > TA(0).

We shall prove that

u(B(a, ) N E) = xy1u(0),

where k, depends only on u and A, and not on 8. This will suffice.
The set E, = E, n B(a, 6) may be covered by a bounded family .% of balls such that

AB.u(9)
A9)

By Melnikov’s covering lemma, there is a (4, k3)-invulnerable subfamily &, such that

Be = uyEn B) >

T B> k() > k).
Bs%
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Applying property (E), with 6, = x;, we conclude that

WE N B(a, 9)) = xy(Kk3) kT ),
so we have the promised estimate, with k;, = x(k3)ky, and the lemma is proved.

The instances of instability that have not hitherto been completely proved in print
and that are asserted in the summary theorem are (M%, y), (M%, M®), (M?, C%), (M?, %),
(MP, Cap), (£, M%), and (£, C%). Since £?= M’, y=y,, and Cap is boundedly
equivalent to 73, it boils down to the fact that we must establish property (E) for (M,
M), (M?, C*), and (M”, 7,).

Lemma. (i) Let 0< a < B < d. Then (M*®, M®) has property (E).
(ii) Let 0 < a < B < d. Then (MP, C) has property (E).

. -2
(iii) Let 2 < p € andep— < B < d. Then (M, y,) has property (E).
4
ProoF. To begin with, we treat (i), (ii) and (iii) together, denoting M* or C® or ¥, by p.
Since u has property (W), it suffices to prove the dyadic equivalent. So suppose & is an
(M®, o))-invulnerable family of dyadic cubes, for some o, > 1, and E is a Borel set of
diameter < &, and u(E n B) = pu(8)6 PMP¥(B) for each Be &. We wish to show that

HE = x3(0).u(6).67% Y, MAB).
e

We may take it that no cube in & contains another, for the invulnerability of .| implies
that

Y MB)>o]' Y MAB).
Bey Bsy

B maximal

We may assume that E is open, since, in general,
HE =inf {uU: E < U, U open}.

We may assume that & is finite, since each subset of an (M?, o))-invulnerable family is
(M?, o))-invulnerable. Let E;, = En B.

Case (i), in which g = M* For each Be &, there is a measure vy of growth a (ie.
vgD < M“D, V¥ balls D), with vy (RY ~ Ep) = 0, and |lvg|| = ky(d)M*(Eg). Let

_ M¥(B)
v= ) E,) Vp.

Be &F

Then |vl| > Ky, ) M*(B).
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Fix a dyadic cube D. If Be & at least one of three things occurs: (1) BN D = ¢,
(2) B meets a face of D, (3) B = 2D. Possibility (2) occurs for at most x;,(d) cubes B,
since no cube in S contains another. Thus

vD =Y vsD+Y vzD
@ (6
< k. & M (D)+ Y M’B
()
< k3. . M*(D)+ o, M"(2D),

so for diam D < 26 we have
vD < xi(a, B, d, 6))& °. M*(D),
so that «j;'.6° %.v has growth a, whence

ME) > ;.6 %.x,.Y M%(B),

as required.

Case (ii), in which g4 = C“ For each B € ¥, choose a positive Borel measure v, supported
on a compact subset of Ej, withl{ |x—y|"*dvg(y) < 1and |lvg| = $C*(Ep). This is possible

since C*is a Choquet capacity [1]. (It is possible to avoid the use of this fact, using the
method of the next case.) Let

_ y M5B
Zy CE,) vg.

Be

We have to show that for all x e RY

Px) = j =)™ doly) < K

where Ky, = K{a, B, d, o).
Fix x e RY. If dist (x, E) > &, we have P(x) < 6 “|lv| < 6°Y MXB) < 6. 6,.(25)’,

so that is all right. So suppose dist (x, E) < 8. Abbreviate { M*(B)/C(E,)}v, to 5. We
have

P, (x) < min '5!*-“ MAEB) }

’ dist (x, B)"

50, using the invulnerability,

a

Pu(x) < KIS{aﬂ_a""J

0 r

» r”"‘dr}

= Ky0""°

where k5 and x5 depend only on @, B, d, and o,. That does it.
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Case (iii), in which pu = y,. To begin with, expand each cube B slightly, and replace o,

1
by il 2+
can now find a compact set Ky = Enint B, with ,(Kp) > 17,(Ep). For each B, take
a function f5, analytic off K, with I fall, < 1, and a\(f) =217,(Ep). Form

. 80 that the expanded cubes B’ still form an (M”, g,)-invulnerable family. We

B,
f= Z %B;))-fs-
Bsy Pe

Then a\(f) > } ). M*(B), so all we have to do is show that || f],,< x,(p, B, a)&/7,(6).
For p = oo, this estimate is practically the same as the case @ = 1 of case (ii) above,
because of the inequality

Y(Kp)
[f5(2)l < dist (z, Kp)

[5, p. 201]. For 2 < p <0, it is just a little more complicated. Use the estimate

i
yp(KB)
< —_—
@ < 5l gt
(7. p. 163], and bear in mind that ,(3) is comparable to §»~2/,
The case of 7,, or equivalently Cap (~ y3), needs a special argument, as usual. The
handiest thing is to work with the kernel capacity p = Cx .. where K(r) = 1 +log, r !,
which is comparable to Cap for sets of small diameter. Proceeding as in case (ii), pick

vg on Ez with P (x) = J K(x—yDdu(y) < 1 and lvgl| = +p(Ep), form
M*(B)

Y . U,
5. yP(EB)

and show that & #p(5)P(x) is bounded, independently of &, where p(8) is essentially
(log 67"

§5. Frostman [4, p. 57] called

B >
lim sup —,uE n B n

rio u(r)

the upper u capacitary density of E at a. The capacities g = 7,(2 € p < w), €% Cap,
Cky b,» M“(as long as they form a pair with £ all have the property (F): each F
density point of £ is a point of positive upper u capacitary density of E. For instance,
property (F) for M“ follows from the estimate M%(E) > MY(E)*“, which holds for all E,
whereas for y it follows from the estimate WE) > {&XE)/n}"2

It turns out that property (F) and the weak subadditivity (W) are enough to give
the pair (&%, w) property (C). This observation is essentially contained in [2, (2.9.17)].

fo
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Lemma. If (%%, 1) is a pair and u has properties (F) and (W), then (£*, y) has property
).

Proor. Fix a Borel set £. We have to show that
WE n Ba, 1) _

8] lrllrg sup = +
or
@ mAE0B@) _

rlo

for #? almost all a e R4

If the upper £ capacity density of E at a is positive, then by property (F) and the
fact u(r)/rY - + oo, we deduce (1). Thus it suffices to show that (2) holds at #¢ almost
all points a at which (1) fails and the & upper density of E is zero. Let G denote the
set of such a. Then G is the union of the sets

G,,={aeR“:uEnB(a, r)Snrdfor0<r<%

i

(n = 1,2,3,...), so it suffices to show that (2) holds at &¥“ almost all points of each G,.

1 . .
Fix n, aeG,, and re (0, 2_n) There is a covering of B(a, r) ~ G, by a countable

family % of balls B such that dist (B, G,) < diam B and Y (diam B)?
Ki(d) F 4 B(a, r) ~ G,). This follows from Vitali’s theorem.

Each ball Be.%is contained in a ball B centred in G,, with diam B < diam B <
2 diam B, thus we obtain

WE N B) < y(En B) < n(diam B)? < 2% (diam B)?,

WENB(a, ) < k) Y WEnB) < 2lnkg F4Ba, r) ~ G,).
Bey

Thus (2) holds at each point a of G, at which R? ~ G, had £ density zero, so it holds
for & almost all points of G,, as required.

§6. Finally, a word about property (D), the icing on the cake. We know of no ‘intrinsic’
proofs of property (D). Where it has been proved, it has been done by associating to
the capacity ¢ an approximation problem. Typically, the problem concerns approximation
in some norm by solutions of a partial differential equation. For example, for kernel
capacities Cy,, the elliptic equation has the kernel X(|x|) for fundamental solution, and
the norm is the L( & norm. So far, the process has been one-way. Perhaps it is possible
to start with an arbitrary capacity y, and construct a partial differential operator L and
norm || such that the capacity exactly characterises removable singularities and
approximation for solutions of L, but this has not yet been done.

e e e s
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