Mathematische

© Springer-Veriag 1986

Math. Ann. 273, 375-381 (1986)

Rational Approximation and Weak Analyticity. I
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1

This paper is about rational approximation in the uniform norm on plane compact
sets. In subsequent papers we propose to deal with some other norms.

We are interested in the extent to which the approximability of a function f by
rationals on a compact set X can be characterised in terms of some kind of “weak
analyticity” of f on X. By “weak analyticity” of f on X we mean that a suitably-
interpreted f-derivative of f should vanish on some suitable subset of X. This
vaguc notion seems a priori reasonable, and motivated early work on rational
approximation. I

Let C(X) denote the uniform algebra [G 1] of all continuous complex-valued
functions on X, and let R(X) denote the closure in C(X) of the space of all functions
which are holomorphic in a neighbourhood of X. We regard functions fe C(X) as
functions on €, by extending them in any continuous manner to €. The following -
is known as Vitushkin’s individual function theorem [V]:

A given function fe C(X) belongs to R(X) if and only if there
exists x>0 such that

11245 <xalvh1 .0~ 0

whenever ¢ %, D is a disc containing spt ¢, and d =diamD.

Here, #? denotes Lebesgue measure on €, y denotes analytic capacity, and & is
the Schwartz space of test functions. This necessary and sufficient condition may,
of course, be viewed as a kind of weak analyticity on X. We are interested in
stronger kinds, involving the existence of a function Vf. Our first result is as
follows.

Theorem 1. Suppose X is a compact subset of C, 2<p=<cc, and [ belongs to the

d
Sobolev space WL:P. Then fe R(X)if and onlyif —{ (@) =0 at #* almost all nonpeak
points a. oz



376 A. G. O'Farrell

Here, the space W,.,? consists of all functions fe L%, whose first distributional
derivative also belongs to L%,.. (In particular, the result applies to smooth f and to
feLipl.) The concept of peak point comes from the theory of uniform algebras,
and was originally motivated by the notion of barrier in potential theory. The
point @ is a peak point iff there exists g € R(X) such that |g(z)| <1=g(a) whenever
a+zeX. It is helpful to think of the set 0(X) of nonpeak points as a kind of
interior of X [although we do not know for sure whether always Q(X nY)CQ(X)
~Q(Y)]. Nonpeak points have been described in terms of analytic capacity by
Melnikov [M]: @€ X is a nonpeak point iff

3 2 A @)~ X)<+ 0,
n=1

where 4,(a) denotes the annulus
(ze@: 27" P <lz—al <27}

There are other characterisations, and some useful sufficient conditions [G L,
(VIIL.4)], and it is often possible to identify the nonpeak points in examples. Even if
that cannot readily be done, Theorem 1 can be applied aslong as we can identify a
subject having full measure in Q(X). By Vitushkin’s instability theorem [V],sucha

subset is
{an: lim Mzo},
rl 0 r

where B(a, r) denotes the closed disc having centre 4 and radius r. By way of further
clarification, we remark that all points of the outer boundary of X (the union of the
boundaries of the components of € ~ X) are peak points, so the condition places
no restriction on f on the outer boundary, cven if it has positive area. The

.. @ . o .
condition a—'g —0 ae on U, where U is open and fé€ WL, implies that f 18
holomorphic on U, so we may rephrase the condition of Theorem 1 as:

0
f is holomorphic onintX and Ej_zﬁ: =0 at almost all points a of the

inner boundary of X at which

rl0 ¥

0.

(Of course, the inner boundary is the complement in bdy X of the outer boundary.}

For smooth f, Theorem I may be deduced from Browder’s theorem [B, p. 166
(3.2.9)], since the “essential set” used there is in fact the closure of the set @ of
nonpeak points. A number of other special cases have been noted in the interim [R,
OF 2]. Notably, Khavinson [K] proved that for sets S having “finite perimeter”

. 0
and for feLipl, f belongs to R(X) if and only if Ejz; =0ae on X. For general X,

this condition is not necessary, even for fe Lip 1. Sets of finite perimeter, such as
Swiss cheeses, are very special, in that the set of peak points in X not only has area
zero, but has Hausdorff dimension one.
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Our second result shows weak differentiability of general f € R(X). Previous
work [OF 3, OF 4, W 1, W 2] showed that the functions in R(X) are “all but”
differentiable at .#? almost all nonpeak points. Specifically, Wang [W 2] showed
that for &2 almost every a € Q and each o € (0, 1), there is a set E, having full area
density at a, and a constant k>0 such that

If(@)—fla)l =x|z—al*| f | rexy

whenever fe R(X) and z e E. Wermer's example [WE] of an X such that R(X)
admits no bounded point derivation rules out the possibility that this could work
for o =1. However, it leaves open the possibility of some kind of a.e. differentia-
bility of £, and this is what we obtain. Given a measurable set E, let DY'?(E) denote
the space of f € L (E) for which there exist [}, f; € L,(E) such that for & 2 almost all
beE,

*13 B(£ ) |f(2)—f ) — (2= D)1 () — .~ B [o(B)ld L *(2) >0

r
as r | 0. For such f, we denote f, by % and f, by g

Theorem 2. Let € R(X). Let a be a nonpeak point, and 1 <p <2. There exists a set
of
Yoo

E of nonpeak points, having full area density at a, such that f € DV?(E), and Pr

a.e.on E.

It is of interest to relate Theorems 1 and 2 to the theory of finely holomorphic
functions. Let f: U—C, where UCC is finely open. Then the following are
equivalent [L, F]:

(1) f is finely holomorphic on U;

(ii) Each ae U has a Euclidean-compact fine neighbourhood X such that
feR(X);

(i) Each ac U has a Euclidean-compact fine neighbourhood X such that
feLip(1,X) and % =0on X.

Clearly this result is closely related to Theorem 1. In fact, a preliminary version
of Theorem 1 was used to proveitin [L]. However, there are sets X with empty fine
interior and lots of nonpeak points, so neither Theorem 1 nor Theorem 2 can be
inferred from the theory of fine holomorphy. Furthermore, there is no possibility
that for general X and general continuous f we could characterise fe R(X) by a
local condition at the nonpeak points. Davie’s example [D 2] provides a set X such
that the only nonpeak points are the interior points of X, yet there exists a function
feC(X), analytic on int X, yet not belonging to R(X).

In connection with Theorem 2, Steen’s cheese [ST] is relevant, 1t has an

.0 7 . . 6
feR(X) for which 8_{ = % and is a {(nonzero) measure, singular to #2. In fact, a—f_
Z y4
is ux #*!, where uis (log, 2)-dimensional Hausdorff measure on the Cantor set C.
The set C x R certainly has some nonpeak points, but of course it has zero area

density at all points.
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Vitushkin’s individual function theorem remains the most explicit necessary
and sufficient condition for a general continuous f to belong to R(X).

2. Proofs
(2.1} First we prove sufficiency in Theorem 1.

Suppose g =0 at %? almost alf points of Q. Let u be a Borel measure on X,
annihilating R(X). Then the Cauchy transform f, defined by

I J‘ d#(w)
TE Z - W

is supported on X, and belongs to L(.#?), where ¢ is the conjugate index to p. For
$e % we have

=1 pas>,

so by continuity, this continues to hold for ¢ & W;,;*. Now =0 at .#? almost all
peak points [G 1, (IL.11.4), p. 54], so

§ fau= f - fd L =

By the separation theorem, fe R(X).

2 ‘2) Next, we prove necessity in Theorem 1. For this implication, we need only
that fe Wi

Suppose f&R(X). By Vitushkin’s individual function theorem, there exists
#,>0 such that

‘Jf%z’z <i,d| 7l y(D~X)

whenever ¢ 2, D is a disc containing spt 4, and d=diamD. Since fe W;", we
have

If dfz f¢ d-?z

Now take ¢,e Z and discs D, of diameter d,,, such that | ¢,d¥*=1, spt¢,CD,,

d,10,d.2¢,] . Sx,<+ 00, andd 1P @l 3¢5 < + 00. Then on the Lebesgue set
of % we have
Tup L,
"oaz
pointwise, where * denotes convolution. Let a be a point of the Lebesgue set
of 5f: at which

y(B(a,r) ~ X)

-0
)
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as r | 0. By Vitushkin’s instability theorem and Curtis’ criterion [G 1, p. 204], £*
almost all nonpeak points are of this type. Then

4.V da(a+ )loyla+ Dy~ X) =0
as n 1 o0, so we conclude that %(a):O. This proves the result.

(2.3) We now prove Theorem 2.

Fix a nonpeak point ae X, a function feR(X), and pe[1,2). To prove the
result, we have to produce a set E, having full density at a, and a function
he L, (&%, E) such that

lim 1)~ (6)~ G bh(b)d£*2 =0 M

of

for %2 almost all be E. If { were smooth, the function # would be .

I u is a measure annihilating R(X), then 0z
n N
fa=jp
#? almost everywhere. Formally, we obtain
.0 :
) el
where B is the Beurling transform [A, Chap. V], defined for test functions by Bé(z)
1 d(w) 2
= PVi =2 d& w.

The formula (2) is the key idea. All we have to do is find a u for which By and
B(fu)exist a.e., and /i is nonzero on a set having full density at a, and then (2) gives
us the desired function h, namely

h= (@)~ {B(fu)—fBw}.

By a theorem of Davie [D1; G2, p. 132], a has a representing measure
veL,(£2 0), where Q is the set of nonpeak points. Replacing ¢ by (z—a)y, we
obtain

. 1 .
fi=— o +(z—a),

Bu=1+(z—a)Bv,
o~ S
==
B(fwy=Jfv+z—a)B(fY).

By the Calderon-Zygmund theory [S, p. 42, Theorem 4; A] Bv and B( fv) are weak-
type L,. In particular, they exist #? a.e. By [OF 1, Lemma 2, p. 406], the set
E,={z: |(z—a)¥(z)| < 1/2r} has full area density at 4. Since |fi|>7 on E,, the

functi
e h=() {V+—aB(f—fI—(z—a)BY}
is properly-defined ¥ a.e. on E;.

+(Z—d)ﬁ,



380 A. G. O’Farreli
Tt remains to construct a set E C E,, having full area density at a with § |hird L2
< + . Pick a>0 with p(1+a0)<2. For n=1,2,3, ..., let E

A,={z: 27" 1 g)z—a| <27,

G,={z€ A,: |BY| <20+, [B(fy)| S2C+07),
El = U Gn H
n=1

E=E10E2.

Since Bv and B(fv) are weak-type L, there exist constants x; >0 and «,> 0 such
that
LBy 2 A} S Ky/A

LBz A} Ska/2,

for all 2>0. Thus LA, ~G)SKk32 " F*(A4,) whence E,, and hence E, have
full area density at a. Also,

§ (z—a)BvfdL*= i { [(z—a)Bv|rd&L*
Ej n=1 G,

< X e 20T gHA )< + o0,
n=1

and similarly,
’ [ z—a)B(/WWPAL? < + 0.
Ez

Since ﬁ and ¥, like all Cauchy transforms of measures, are locally p-th power
integrable, we conclude that

[lhPdL2 < + o,
E

as required.

3. Concluding Remarks

(3.1) Corollary to Theorem 1. Let fe W,3;” for some p>>2, and let A be countable.
Suppose that f ~1(A) is closed, and each a€ X ~ f ~'(A4) has a closed neighbourhood
N such that fe RINnX). Then fe R(X).

For example, if fe W}.? for some p>2, and f belongs to R(X) locally off the
zero set of £, then fe R(X). In particular, if f e W,.” and f? € R(X), then f e R(X).
Itis an open question whether fe C(X)and f* € R(X)imply f € R(X). Paramonov
[P] showed that if f € Lip(, X) for some o>% and f belongs to R(X) locally off its

. . -2
zero set, then fe R(X). Since W, CLip(a, X) for a< p—, Paramonov’s result
leads to the same conclusion as ours for p>6. P
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More generally, the Corollary shows that if /e W,i:F and p(f) € R(X) for some
polynomial p, then fe R(X) (Take A=(p")" '(0)). Indeed, this works even for p
analytic on a neighbourhood of f(X).

(3.2) Assuming Theorem 2, it is possible to give another proof of necessity in
Theorem 1. The space W,%? is a subset of D'>#(E), for each bounded E, and the
distributional and pointwise derivatives agree a.e.
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