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Abstract. The paper exploits a new kind of Lip 1 partition of unity

on € and a trick based on Fubini's theorem, to shorten significantly the

proof of the fundamental theorem on uniform rational approximation.
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i. The theorem in question [4,p.171, Theorem 2] is the main theorem on

gualitative uniform rational approximation:

Theorem. Let X be a compact subset of € and let f : € ~ € be uniformly

continuous, with modulus of continuity mf(s). Then the following

conditions are equivalent:

(1) There is a sequence fn of rational functions with poles off

X, such that fn + f uniformly on X;

(2) There is a constant « > o such that

f(z)dz
bays

S Kuwg (8) v (S~X),

whenever S is an open square of side §. Here v denotes analytic

capacity.

(3) There is a function n{(s)} + o such that

j f(z)dz

< n(8) v (S~X),
bdyS

whenever S is a square of side §.

The implication (1} = (2) is due to Melnikov.
The deepest part of the theorem is the implication {3) = (1). To prove
this part, Vitushkin shows [4,pp.177-180] that condition (3) implies the

following:



(4) There exists n(§) + o such that

[ f2) 2 axdy| < nio) - o o 9ell_ - v(E,)

¢

whenever ¢ ¢ &) has support in a disc D of diameter & and E¢

denotes the set

{z g 0~ X : distiz,spt ¢] < 25} .

He then shows that (4) = (1).

The point of the present note is that there is a simple argument
showing that (3) implies a variation {(5) (see below) of (4), and that a
slight variation of the old argument shows that (5) = (1}. Thus the rather
hairy argument of [4,pp.177-180] may be dispensed with. Here is the

variation of (4):

(5) There exists n{8) + o and a constant « > o such that

’Jf(z) %% dxdy) < n(8) . 8. (|98l v(cS~X)

whenever ¢ ¢ Lip 1 has support in a square S of side 6 and ¢

is constant on each square bdy tS, concentric with and parallel

to S.

Basically, (5) is weaker than (4). It is readily seen that (4) implies
(5), with « = 4,

2. Proof that (3) = (5) (with x = 1)

This is the crucial part of the new trick, and the main ingredient

is the distribution formula.

X

S dz
(6) == = -

8z 2T | pay s

valid for any square S (or any set S with rectifiable boundary). This
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formula is merely a reformulation of Pompeiu's formula.

Let ¢ € Lip 1 have support in a square S of side &, and be
constant on each square bdy tS. Then there is a function ¢ € L"[0,8],

with [[v|| < |[v¢]l_. such that

i
o(z) = ¢(a) +6L xig(2) w(t)dt,

where a is the centre of S. With a little manipulation, formula (6)

yields

(7) Jf% dxdy = 5J{?T J f(z)dz} v(t)dt,
0" bayts

valid for all continuous f on €,

Formula (7) renders it completely obviocus that (3) = (5).

3. Proof that (5) = (1).

If you look at the arqument for (4) = (1) in Vitushkin's paper
{4, Ch,IV, 52, Lenmal], or in Gamelin's book [2,pp.215-217], or at the
simpiified argument of Davie [1,pp.412-413], you will see that to prove

(5) = (1), it suffices to find a constant ¢ > 0 and, for each 6 > 0, a

o

partition of unity {¢2}n=1 on C such that

<

0 <9 -

nfl’ canL'ip], le¢nl|m <

¢ is supported on a square Dn of side §

n
(8)

no point belongs to more than 9 D,'s

n is constant on each square bdy t Dy

and such that, given a number g e (0,8), we may write ¢2 =Ty



where the wén) satisfy:

oo™ <1, wWMevtipt L, w™, < g

wén) is supported in a square Eé") of side 8,

(9)
no point belongs to more than 9 Eén)'s for fixed n

w&n) is constant on each sguare bdy‘tEén).

The "variable-size" subpartition {wﬁn)} is used for "matching the second

coefficient", the heart of ail the arguments.

There is, of course, absolutely no probiem about constructing
such functions ¢2 ’wén) » except for the restriction that the level sets
must be concentric parailel squares. That it can be done, with this

restriction, is a recent discovery [3]. Here is an explicit construction:

Lefine

p(X,y) = max{O,] -max{|xl,]y|}}

o{X,y) = max{O,l —max{|x -y[,|x-+y]}}
p(x-my, y-n) , if m+n is even

Yanoy) =

o{x-my, y-n) , if m+n is odd

8 _ Z

Am,n{2) A&7 )

6eo ) s o0 o
to, = Dk,

The {¢2} so defined satisfies conditions (8), with ¢ = V2. We now describe

how to make the decomposition



8

n.n with m+n even. The other case is similar. It
3

. § _
in case ¢ = A
suffices to consider B = 5/q, with g integral. We have, for such g,

(@) = Iap(erassihy ((2),

and the system {wén)} = {¢g(8r,ss)lﬁ sl has the properties (9).
k ? JY‘,S

These facts are readily checked.

The system ¢2 R wé") may be understood geometrically in terms
of a subtessallation, by pyramids and tetrahedra of various sizes, of a
tessellation by congruent pyramids and congruent tetrahedra of the layer

{o <z <1} in R3®. More detail may be found in [3].

[t is worth remarking that Vitushkin's proof requires only
that condition (3) of the theorem holds for squares with sides paraliel

to the coordinate axes, while the new proof requires it also for squares

making a 45° angle with the axes.
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