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C* maps may increase C>-Dimension

Anthony G. O'Farrell
_Maynooth College, Maynooth, Co. Kildare, Ireland

1. In Gromov’s book [1, Sect. (1.3.2)] the C*-dimension of an arbitrary subset
S in a smooth manifold Y is defined to be the least integer m such that §
is contained in a countable union of C*-submanifolds of dimension m in Y.

Gromov observed that the Thom equisingularity theorem shows that the
C*-dimension is monotone nonincreasing under generic C* maps. He conjec-
tured that this fails for arbitrary C* maps. The purpose of this note is to give
an example. Specifically, there is a C* function x: R — R? such that imy cannot
{even) be covered by a countable union of nonsingular C! curves.

2. We appeal to the following simple fact, which is probably well-known.

Lemma. If 4 and B are uncountable compact subsets of R, then AxBcR?
cannot be covered by a countable family of nonsingular C ! curves.

Proof. Suppose # is such a family. Replacing, if need be, each curve in &
by a countable number of subcurves, we may write # =% w %, where no curve
in # has a vertical tangent, and no curve in % has a horizontal tangent.

Take probability measures u on 4 and v on B having no point masses.
The set UF, meets each vertical line in a countable set, so by Fubini’s theorem,

(uxv)(UF)=0.

Similarly, (1 x v) (U#,)=0, hence (% v){A4 x B}=0, which contradicts (s x v)(A4
x B)=(uA)(vB)=1.

We will construct a C*= function x; R — R? for which y{{3' =0}) (=the image
of the set of critical points of y) is Ax A for a certain nonempty perfect set
A. This will do.

3. For 2<neZ and a sequence d=1{d;}§ with nd;,,<d;, let C(n, d) denote

the linear Cantor set [ | C,, obtained by starting with C,=[0, d,] and, at the
j=0

" stage, replacing each of the n'~ ! intervals in C;_, by n equal, equally-spaced,

maximally-spaced subintervals, each of length d;.
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Let D=C(4, 1677). (The important thing about 16 in this construction is
that it exceeds 4.)

We will produce a sequence d; and a map y:IR - R such that y is C%,
D is the set of critical points of ¥,

D TR

Fig. 1
and (D) is a Cantor set
E=C(4,d).

Then we will define a Lipschitzian (=Lip 1) map ¢: R —+R? such that ¢ is
affine and nonconstant on cach interval of R ~ E, and ¢ (E) is the square Cantor
set

F=C(2,dyxC(2,4d)

corresponding to the same sequence d = {d;}§’.

The function y = ¢ =i then provides the example:

(1) The image of D under yis F.

(2) x is C*, and flat on D (ie. =0 on D for k=1,2,3,...). To sce this
it is enough to check that y®(y)—0 as y approaches any point xeD from
R ~ D. But for yeIR ~ D we have

W) =y¢® ) [¢ WO,

since ¢ is affine on IR ~ E. Furthermore,

CACAVD)] P22

where L is the Lipschitz constant of ¢, so

MW )L =0

as y approaches xe D, since * is continuous and vanishes at x.
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4. To construct  and {d;}, take a nonnegative C* function 4 that vanishes
precisely on D, and set

x

W(x)= | A(0)dt.

]

To be specific, we define A(t)=0 for te D and
AO=exp {—lt—al™ ' —it—b| "}

for te(a, b), where (a, b) is any one of the bounded component intervals of R ~ID.
It will be important that A has the same integral over components of R~D
having equal length. In does not much matter how we define A off [0, 1]. For
instance, A(f)=exp {—|t|"!} on (—oo, 0) and A(t)=exp {—|t—1|""'} on (1, o}
will be fine.

The function ¥ is C®, and its critical points are precisely the points of
D. The fact that \f(b)— yr{a) =y (P')— y(¢"), whenever (a, b) and {(a’, b) arc compo-
nents of R ~ D having equal length, ensures that E=y(D) is a Cantor set C(4, 4),
and that defines the sequence d= {d;}.

167/
We can caiculate d, explicitly. It is just | A(z)dr. Writing this out explicitly
as a sum, it becomes ¢
oo 16-i-k )
3. 4 | exp{—tT'—|167 7 —¢[ 7} ar.
k=1 0

From this, we obtain that
d;Sexp(—169-d;_,.
Thus d;— 0, very rapidly. We will use only that 16d;<d;_, in the sequel.

5. To construct the map ¢: R = IR?, we begin by constructing its restriction
to E.

1 2 3 4
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dj-‘l
3 4

Fig. 2
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The definition of ¢ is essentially explained by the diagram. Formally, it
is the pointwise limit on E of maps ¢;. The map ¢; maps each interval composing
C;=C;(4, d) to the centre of one of the squares composing C;(2, d)x C;{(2, d).
The map preserves © order”, where the “order” on E is the order of IR, and
the “order” on F=C(2, d) x C(2, d) is that induced by top-left, top-right, bottom-
left, bottom-right on j-th gencration subsquares of a given {j— 1)st. generation
square.

N\

3 2
= >
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Fig. 3

To define ¢ on R ~E, we use the pattern indicated by the second diagram.
Thus, ¢ is affine on each interval composing R~E, and im ¢ connects the
bottom right corner of some square to the top left corner of “the next” square.

We have to check that ¢ is Lipschitzian.

1° First, it is Lip1 on E. Fix x, yeE, x#y. Pick j minimal so that x and
y fall in different segments of C;(4,d). Since 16d;<d; ,, we see that |x—y|
is between d;_, and d;_,, and |¢(x)— ()| is between +d;_, and d;_,, whence

lp(x)— PP =4x )l

2° Next, the derivative ¢’ is bounded on R~E. In fact, if we consider a
segment of R ~ E, that appears at the j™ generation, then both it and its image
have lengths comparable to d;_ ;.

3° Finally, given xeE and yeR~E, let z be the endpoint of y's segment
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that is nearest x. Obviously,

| (x)—d W) =1 (x)— D)+ (2)— D)
§4lx—2|+(§llrél¢’|) lz—yl

éAlx*yls
where 4 =max {4, sup|¢'[}.
R~E

(In fact, closer analysis shows ¢ is biLipschitzian, for what it’s worth.} This
commpletes the construction of the example.

6. Addendum

A related question is whether there is a reasonable dimension concept “dim”,
with the following properties:

(1) dim E is defined for all subsets (or even closed subsets) of each C* mani-
fold, and Ec F=-dim E<dim F.

(2) dimR"=m.

(3) dim f(E)<dim E whenever [ is a C* map.

(4) There is a “topological Sard theorem™: If f is C* and maps a closed
set A into B and dim B=dim A, then the image of the critical set of f|A is
meagre in B.

_This question was raised by Gromov, in reaction to the example. Basically
the answer is no.

For properties (1) and (3} to make sense, the values of dim sheuld lie in
some partially-ordered set. To be “reasonable”, the values should be (at least)

‘real numbers. Suppose we have a real-valued dimension concept with the stated

properties. Since dim IR® =0, property (3) gives dim E =0 for all nonempty E.

Let AcIR be any closed set with an accumulation point, say, a. The zero
function from R —+IR°® is, by any definition, critical at a on 4, so property
(4) gives dim A > 0.

We see at once that an integer-valued dimension is impossible. The sets
D and E of our construction above would have 0 <dim E<dim D=1,

An elaboration of this idea rules out even a real-valued dimension. Let
« be the infimum of the dimensions of all nondiscrete compact subsets of R.
Then a=0. If we can produce a nondiscrete compact set £ with dimension
o, then we get a contradiction. For then 0<a <1, and we can define, as in
the construction of iy, a C* map of E onto a nondiscrete F, with i critical
on E; this makes 0 < dim F < dim E =«, contradicting the minimality of a.

If no E with dim E=a exists, then there are sets E, with dim E, | o We
may assume that the E, are perfect and totally-disconnected. For ecach n, we
can construct a C* map ¢,: R—R, flat on E,, mapping E, onto a dyadic
Cantor set E,: All we have to do is organise E, as an intersection of suitable
unions of intervals, and pick ¢, to have equal integrals over corresponding
complementary intervals. Then dim B, <dim E,, so dim B, | a.
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Now each B, has a defining sequence {d{"} . Taking the sequence
dY=j 7 -min {d", ..., d"}

we get a Cantor set B, for which each natural map B,— B, has a C* extension,
critical on B,. Thus dim B, < dim B,, so dim Bo=a, and we are done.

If the concept of “reasonable” is relaxed a bit, there is a possibility that
there might be a dimension of the kind specified, with values in, say Z* x¥,.
A prerequisite for the existence of any such concept is the nonexistence of a
closed set A in some C* manifold Y and a C* map ¢: Y— ¥ with ¢| A critical
on A and ¢(4)=A. Here “¢| A critical at a point ae4 refers only to the action
of D¢ on a tangent space to 4 at a.
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