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1. Introduction

(1.1) This paper is about rational approximation in Lipax norm (0<a<1) on
compact sets X CC. It contains Lipa analogues of uniform approximation
theorems. .

Fix a€(0,1), and a compact set X CC. Let f=1+a. We denote by R,(X) the
closure in Lip(x, X) of the set of rationals having poles off X, or, what comes to the
same thing, of the set of functions holomorphic on a neighbourhood of X. In
[OF 1] we showed that a function felip(a, C) belongs to R,(X)if and only if cither
of the following two equivalent conditions holds:

(1) There exists x >0 such that

<k flop d- 1Vl MAD~X),

0
gf—a%dxdy

whenever ¢ is a test function (i.e. C* with compact support), spt¢ is a subset of a
dis¢D, and d=diamD.
(2) There exists n(6)|0 as 8]0 such that

Snid) d- |Vl MD~X),

gf%%dxdy

whenever ¢ is a test function, spt¢ is contained in a discD, and d=diamD.

Here, M?# denotes S-dimensional Hausdorff content.

These conditions express a kind of “weak analyticity” of the function f- The
main objective of this paper is to examine the connection between R,(X) and
stronger kinds of “weak analyticity™.

Qur first result is a kind of Morera theorem.

Theorem 1. Let 0 <a <1 and let felip(x, C). Then f belongs to R,(X) if and only if
either of the following equivalent conditions hold:
(3) There exists x>0 such that for each closed square B,

{ f(C)dC‘ <k | flap MP(B~X).
bdy B
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(4) There exists n(8)|0 such that for each closed square B,
§ f(C)dC‘ <n(side B): M(B~X).
bdy B

This theorem is the Lipa analogue of [V, Theorem 2, p. 171]. The idea of our
proof could be used to give a somewhat novel proof of Vitushkin’s result. We

exploit the observation that the distributional J derivative % of the characteristic

. . d
function yx; of a smoothly bounded set E is the measure — —f .
bdy E
There is a “fine topology” on the plane which is important for Lipa
approximation, the f-topology (it has nothing to do with Stone-Cek; § is 1 + o).
Let Bla, r) denote the closed disc having centre a and radius r. We say that a set
NCCis a B-neighbourhood of a if ae N and

im MP*(B(a,r)~ N) _

0
rl0 rﬂ ’

ie. if C~ N has f-density zero at a. That this does define a topology follows from
the subadditivity of M*?. The 2-topology is the Lebesgue density topology.
We denote by W,}.? the Sobolev space of functions f e Lf, whose distributional

derivative is also locally p-th power integrable.

Theorem 2. Let O<a <1, f=1+a,p>2/(1—a),and fe€ W,X.7. Then fe R(X)if and

loc

only if %Jz; =0 a.e. (dxdy) on the -interior of X.

This parallels Theorem 1 of [OF 2]. The p-interior has replaced the set of
nonpeak points. A weaker result was given in [OF 3, Theorem 2]. :

The instability theorem for the pair (area, Mf) [OF 4] yiclds that at area- |
almost-all aeC, either ’
M%(B(a,r)~ X) MP(B(a,r)~ X)

lm sup ) >0 or lim ——s—"=0.
rl0 r r]o r

This permits us to strengthen Theorem 2, as follows:

Theorem 2'. Let o, f, p, and f be asin Theorem 2. Then fe R (X)if and only if ?i_
. . oz
at dxdy-almost all points at which
8 ~
i MB@D~X)

rlo r

=0

In connection with [OF 2], we observe that, even for Lip1 functions f and
int X dense in X, the conditions fe R(X)and f e R,(X) are not equivalent. Take, for
example, a compact set £ C B(0, 1), having positive area and no interior. Take open,
smoothly-bounded sets Q,|E. For cach n, take an open neighbourhood U, of
bdy(£2,), disjoint from E, with

MHU,) <27 dist(U,, E)'°.
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Let U={U}*,, and let X = B(0,2)~U. Then for each ae E, we obtain

a=1»

~X
(5) fim inf Y@~ X) o
rlc ¥
B ~
o o MBI~ )
ry0 r

By Nguyen’s theorem [N] E may be chosen so that there is a Lip1 function f,
holomorphic ofl E, with % +0 on a set E, C E having positive area. By [OF 2,

Theorem 1], f€ R(X), whereas by Theorem 2, /¢ R,(X).

Perhaps it is worth mentioning that Theorem 2 permits another equivalent
characterisation of finely holomorphic functions. It is known [L] that a function f
is finely holomorphic on the finely open set U if and only if each ae U has a
Euclidean-compact fine neighbouthood X such that feR(X). Combining
Theorem 2 with Lyon’s method [L], we can show that, given a(0,1), f is finely
holomorphic on U if and only if each aeU has a Euclidean-compact fine
neighbourhood X such that fe R, (X). This, however, is not very surprising.
Fuglede has essentially shown [F, Theorem 11(a)] that, given k e Z, the function f
is finely holomorphic on U if and only if each ae U has a Euclidean-compact fine
neighbourhood X such that f belongs to the closure of the rationals in CX(X).

2. Proof of Theorem 1

(2.1) Evidently, (3) = (4). That fe R,(X) implies (3) is basically due to DolZzenko
[D]{(cf. also [G, p. 65, Lemma 2.2]). For f'e R,(X) and test functions ¢, the integral

a .
jf?%dxdy is the coefficient a,(T,f) in the expansion T, fzs)=a,/z+a,/z*+ ...,

where T, f=¢f—% ( f %) and ¥ denotes the Cauchy transform, defined by
_ 1 pg(u+ w)dudy
Gsla)= nd z—(u-t+w)

Since | T, fl| <x-d(@) - |V dllw - | /o, pig [OF 1], the result (3)follows from the fact
that T, f is analytic off D(¢)~ X and the DolZenko estimate

la; (gl <x - ilgll,- MP(sing. sptg).

It remains to show that (4) implies that fe R (X).
Forasquare D, and s> 0, let sD denote the square, concentric with and parallel
to D, with side equal to s times the side of D.

(2.2) Lemma. Suppose felip(a, X) and there exists n(6)10 as 6|0 such that

)ff%%dxdy <nld)-d- 179l MAD~X),

whenever ¢ € Lip1, ¢ is supported on a square D of side d, and ¢ is constant on each
square bdy(sD). Then fe R X).
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Proof. This Lemma is a variant, with weakened hypotheses, of the implication
{4) = (1) in Theorem 1, p. 104 of [OF 1]. To prove it, look at the argument of
pp. 199-202 of [OF 8], the lip« version of the Vitushkin scheme. You will see that
to prove the Lemma, it suffices to produce, for each >0, a partition of unity

{¢a} ={d7} such that
@ 05,51, ¢,elipl, [Vl S)28,

¢, is supported on a square D, of side 4, no point belongs
to more than 9 of the D, ¢, is constant on each square
bdy(tD,).

and such that, given a positive number §=§, <48, we may write ¢, = ¥y, (with the y,
depeading on f3,), where k

(8) 0=y, <1, welipl, 1Pyl <|/2/8,

y, is supported on a square E, of side f, no point
belongs to more than 9 of the E,, i, is constant on each
square bdy(tE,).

The “variable-size” subpartition {™ is used for matching the second coefficient in
the Laurent expansion at infinity of T, f, where T, is the Vitushkin localisation
operator. S

The whole problem here is to find functions ¢, and y, that are level on squares.

{2.3). Construction of the Special Partition of Identity. Let D, denote the open
square of side 2 centred at the point a ¢ C with sides parallel to the axes and let E,
denote the square obtained from D, by rotating through z/4 and shrinking by

1 /]/5, keeping the centre at a. Figure 1 shows E, inside D,
Define
o(x, y)=max {0, 1 —max{[xj |yl}},
ofx, y)=max {0, 1 —max {[x — yj,[x+ yI}} .

Then g (resp., ) has support D, (resp., E,), is constant on each bdy(tD,) (resp.,
bdy(tEg)), has valuesin[0,1],and is Lip 1, with {|Fo| , =1 (resp., |[Va |l . = ]/5). For
(m,n)e Z?, define

e(x—m,y—n), if m<niseven,

VX, )= {g(x—m,y-n), if m+nis odd.

Fig. 1




v. G. O'Farrell

implication
argument of
will see that
ion of unity

(with the v,

soefficient in
localisation

| on squares.

ite the open
es and let E,
hrinking by

=

r(t

0

o) (resp.,
2).For

A

Rational Approximation and Weak Analyticity. 11 173

Then {y,, ,:(m, n}eZ*} is a partition of unity. Indeed, it suffices to check this on the
triangle with vertices (0,0}, (1,0), (1,1), where we obtain

b3 ‘Pm.nﬁWO,o'*"Px,o‘HPx,n=1—X+J’+X—y=1-

Each ,, ,is supported ona D, or an E, and is level on the corresponding bdy(tD,)
or bdy(zE,).

The partition vy, , may be understood geometrically in terms of a simple
tessellation of the layer {(x,y,z)eR*: 0=z <1 }. The p(x —m, y —n) with bothm and
n even correspond to copies of Cheop’s pyramid sitting edge to edge, covering the
(x,y)-plane. The o(x-—m,y—n) with both m and n odd correspond to identical
pyramids, placed upside-down, with their vertices at the points where the first lot
meet in fours. The functions o(x—m, y—n) with m-+n odd then describe the
vertical thickness of the “holes” in the paving by pyramids. The holes are
tetrahedra, which, viewed from above, appear as in Fig. 2.

If you ever find yourself in Paris, then for the price of a cup of coffee, you can see
precisely such a tessellation in the cafeteria at Jussieu.

This geometrical approach makes it easy to see that, given any integer ¢, the
pyramids corresponding to v, , are exactly decomposable into similar pyramids
and tetrahedral, reduced in scale by a factor g. The resulting algebraic formula,
which can, of course, be checked algebraically, is the following: Let Y2 =W nl2/0)
be the partition ,, ,, Tescaled by 8. Then for 0<geZ and §>0, we get

b2 = T W u{cn) Wl {2), (9}
wheré f=45/q¢ and c,,=(rf,sp) is the centre of the support of vl

Evidently, the partition ¢,=v?, , has property (7), and the decomposition (9)
gives y,, with property (8).

(2.4) Now we will prove that (4) implies the hypothesis of Lemma (2.2). This will
complete the proof of Theorem 1.

Suppose f € Lip(a, X) and satisfies (4). Fix a square D of side d >0 and suppose
@eLipt is constant on each S,=bdy(tD) and zero off D. Then ¢ may be written

1
o{z)=pla)+ CI) Lplzhp(t)dt

where y,, is the characteristic function of tD, ()= — di(p(a-kd- 1), and a is the
centre of D. Formally, this suggests the formula t

%2 dxay= j (-zlj f(Z)dZ) w(odr.

S
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In fact, this formula is readily verified, using Fubini’s theorem.
We deduce that

g 1
& <-. : d
“faz dxdy < 5 Iyl Os;tgdlsj(f&) 2'

1
which yields the desired estimate.

3. Proof of Theorem 2

(3.1) Necessity. For this we need only fe W' !. Suppose f€ R(X). By Theorem 1,
there exists x>0 such that

] f(C)dCi 56| fllan M (B~X)
bdy B

for each square B. Now
rof
Al =2i\ —-dxdy.
=21 dy

a .
Let a be a point of the Lebesgue sct of a—J;, at which

M*(B(a,r)~X)

72
as r)0. By [OF 4], area-almost-all points « of the p-interior of X are of this kind.
Then

i

1 of
7 (@) a2 ) —dxdy—0

0z
a, s)

d . b
as s}0, so that Ejz;(a)=0. This proves that the condition is necessary.
(3.2) Sufficiency. Recall [OF 6] that if Te Lip(z, X}* annihilates the constants,
then the Cauchy transform €/ is representable by integration against a function
(also denoted ¥f) in Li., where g is the conjugate index to p [assuming that
p>2/(1—ua), of course]. In fact, if u is a positive measure on X x X, having no mass
on the diagonal, and such that
g(z)—gw)

Tg= j © B dulz, w)

X=X |Z - Wl

(— the De Leeuw representation), then
{(w—2)dp(z,w)
(z—a)w—a)|lz—w|*

¢T@= |

XxX
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for dxdy-almost all a, and at almost all a we have

lw—z|' "*du(z, w)

< +o0.
iz—allw—al

(10)

XxX

Suppose TLR,(X) and y is as above. We have
of
oz
so it suffices to show that €T=0 at dxdy-almost all points off the f-interior of X.
Fix a point a ¢ B-int(X) at which (10) holds. There exist x > 0and r,| 0 such that

M*(U(a,r,)~ X)
e

1]

Tf= (€T 2= dxdy,

>k >0,

where Ul(a, ) denotes the open disc with centre @ and radius r. By [OF 7], thereisa
function h(r)> 0 with h(r) £r* and h(r)/rf -0, and a measure v, on U(a, r,)~ X with
vB(b,r)<r? for all beC and all r>0, and with ||v,] =xrf. It follows that the
Cauchy transform %v, belongs to R,(X), so that T(%v,)=0. Moreover,
v, Il =1 -€v,—(z—a)~! pointwise off {a}, and an estimate shows that
_ |z—w]|
1, — %y (W) SK——— .
” VPIH I(gvn(z) vn{w)| - K |Z _a‘ |W — al
By dominated convergence, T%v,—%T(a), whence ¢ T(a)=0. That does it.

In closing, we remark that the condition p>2/(1 —a) is a natural restriction,
since without it a function in W? need not belong to Lipa.

T am deeply grateful to J. Verdera for pointing out an error in the original draft of this paper.
I would also like to thank the referee for some helpful comments.
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