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ABSTRACT

Let L be a pseudodifferential operator of {possibly non-integral) order
m on RY and let F be a topological vector space of distributions on R%. We
say that a compact set KcR? is L-F-null if, given an open set U< R and
a distribution fe F such that Lfis C* on U~K, it follows that Lfis C*
on U. We also say that K is a set of removable singularities for solutions of
Lf= g(g smooth) that belong to F. We describe the l-reduction, a method
for reducing problems about singularities for general elliptic operators to
problems about supports. Applying the i-reduction and a theorem of
Dahlberg, we identify the L-Tgnull sets for all elliptic L and all real g such
that Bz orderL. The scale of 4 is essentially an extension of the scale of
HéldeﬁZygmund spaces. These null-sets are the compact sets K with
MA+B-ord&L gy — (0, "where M” denotes e-dimensional Hausdorff content.
We indicate the further application of the l-reduction to Sobolev and Besov
spaces, and dual approximation problems.

1. Informal introduction

This paper is a fragment of a programme that has been running for the
last century or so. You could even say that it has been running since
Cauchy proved that isolated singularities are removable for bounded
analytic functions. Let L be a pseudodifferential operator on R and let F
be a topological vector space of distributions on RY. We say that a compact
set K<R? is L—F-null if, given an open set U=RY and a distribution fe F
such that Lf is C* on U~K, it foilows that Lfis C™ on U. We also say
that X is a set of removable singularities for solutions of If= g(g smooth)
that belong to F. The programme. is the more-or-less systematic assault on
the question: describe the IL-F-null sets as explicitly as possible, for each
reasonable L and F. The fragment is the solution for all elliptic L and the
case F = Lipf (for B non-integral and SsorderL). Essentially, a nowhere-
dense compact set K<R? is Z-Lipf-null if and only if K has zero
(d+ B—orderL)-dimensional Hausdorfl measure. This actually works, not
only for 0 < g < L, but also for —oo < < + oc. That is, there is a reasonable
definition of *Lip#’ for all real £ and with this definition, the thing works.

If we make the assumptions that (1} F contains the test functions and
(2) the operator £ is such that each C™ function g may be written locally
as Lk, with e C®, then (as is clear) K is L—F-null provided =0 on
U~K entails Lf=0 on U. This assumption (2) is valid for all elliptic
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differential operators L [8, 17.1.1].

The method we shall use to establish the result is called the 1-reduction.
It may be applied to a considerably more general class of function spaces
F, but not to all. The crucial factor is the behaviour of the function space
under singular integral operators.

Application of the 1-reduction to this problem reduces it to a problem
previously solved by Dahlberg.

The 1-reduction may also be applied to problems other than removability,
notably approximation problems and boundary smoothness problems.

Up to now, the state of public knowledge on this subject was as follows.
The result is obviously trivial for f> orderl, because in that case all
nowhere-dense compacta are removable, and all sets in R? have zero
(d+ f—orderL)-dimensional Hausdorff measure. At the other extreme, we
will see that the result is equally trivial for #< orderL—d, because solutions
of Lf =0 belonging to ‘Lip#’ may have isolated singularities, so that only
the empty set is null. Apart from these trivial cases, the result was known
for positive non-integral B and the two most important elliptic differential
operators. For the Cauchy—Riemann operator ¢ on = R2, Dolzenko [5]
proved the case 0 < f< 1. For the Laplacian on R Carleson [3] proved
the case 0 < <1, and Verdera [17] the case 1< f<2. More generally,
Verdera proved the case of homogeneous constant-coefficient L and

(orderL)—1 < f« orderL. The case L = a’ix could be described as folklore.

The statement in that case is that there is a non-constant Lipf function,
locally-constant on R~ K, if and only if K has positive [-dimensional
measure. This is suitable as a homework problem for a. real-variables
course, and no doubt has so been used. As a specific example, there is a
non-constant Lil?(log3 2) function, locally-constant off the usual Cantor set.

dr . . o
The case L =& n R relates to the smoothness of ‘splines’. One direction

of the result, namely that null-sets of the appropriate Hausdorfl measure
are removable, works for arbitrary smooth differential operators, and
systems of operators, and was proved by Harvey and Polking [6, theorem
4.57]. The other direction fails in this generality. For instance, it fails for K]
in C2, where there exist sets of Hausdorff dimension 4 that are E-Lipa-null
for all @> 0.

The proof by l-reduction bears little resemblance to the classical proofs
of special cases.

It is pretty well known that there is a duality between questions of
removable singularities and questions of approximation. Essentially, if the
C™ functions are dense in a ‘reasonable’ space F, and K<RY is compact
and nowhere-dense, then the following are equivalent:

(1) the set { fe F: Lf=0 near K} is dense in F on compacts;

(2) K is E-F*-null, where £ is a local inverse for L and /* is the dual
of F.
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For instance, this was written out for general elliptic differential
operators and the case of the L’-L¥ duality by Serrin. It has been extensively
exploited in the L’ case by Havin, Hedberg, Bagby, Polking, and others,
mostly for special differential operators. Oddly enough, this insight has
served to obscure more than to illuminate the essentials of removable
singularity theory. The essence of our method in this paper is the use of a
different equivalence, which can be expressed (loosely speaking) thus:

Kis L—F-null <= Kis 1~ LF-null.
Here ! stands for the (elliptic) operator

Lof e f

To say that 1/=0 on an open set U is simply to say that the support of f
is disjoint from /. By LF we just mean

{Lf: [ e Fl

Thus, all questions about removable singularities are reduced to questions
about the l-operator. For ‘reasonable’ F and elliptic L the space LF
depends only on (F and on) the order of L (up to local equivalence—see
below). In the present case, Lipf is ‘reasonable’ for 0 < f< 1, and for me Z,
the common value of LLipB, over all L of order m, is basically what we
call Lip(f—m); however, we will give a much more explicit description of
1.

It turns out that the problem of describing the 1-Lipf-null sets in R is
non-trivial precisely when f is in the range —d < 8< 0. Thus the Lipg for
negative f play a crucial role. Take, for example, the bi-Laplacian, L = A%,
important in elasticity theory. The interesting range of Lipfs is given by
4—d< f<4. For f<4, a compact set K is 4° — Lipfnull if and only if
M¥P=%Ky =0. In case the dimension 4 = 2, this tells you how smooth an
elastic plate can be which is clamped along a set K, in terms of the
Hausdorff dimension of K. Note that for &> 4. there is a non-trivial
problem for the negative Holder classes. The same thing happens for the
Laplacian when the dimension exceeds 2. For instance, in dimension 3,
one-half-dimensional Hausdorff measure tells you about removable
singularities for Lip(—}) harmonic functions. From the physical point of
view, it tells you about the electrical field of a charge distributed on a
fractal. By duality, it tells you about approximation by Newtonian potentials
in pre-duals of Lip(—}). One such pre-dual is, in fact, a certain Besov space,
known as B%,l (locally-equivalent to the enveloping Banach space of the

Newtonian potentials of elements of the pseudonormed Hardy space
HY(RY.

Triebel [15] showed that for 0 < a < 1, the space L™ n Lipa coincides
with the Besov space B? , (defined in terms of properties of a Paley-
Littlewood-style decomposition). The scale BY ,(—o < f< +wx) thus
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provides a natural version of ‘Lipf’ for each real 8, and the removability
result holds for it. But adopting this definition does not materially reduce
the amount of work we have to do to establish the result, and it adds
baggage, so we prefer to use a more clementary version Ty of
Lipf(—m < 8 < +c0). The ideas in this paper are fundamentally simple, so
we are anxious to avoid obscuring them by making the development
depend on the rather claborate theory of the Besov spaces. In the final two
sections of the paper, we assume familiarity with the Besov spaces, prove
the duality result and indicate some further applications of the 1-reduction.

2. Formal introduction

We consider linear differential operators on R¥ of the form

L= % a(xdf.

|t = m

Here i=(i;,...,I,) denotes a multi-index and | =}, denotes its rank.
We consider only the case of C” coefficients @, although this is not a
crucial assumption. We call the operator L elliptic of order m if, for each
x € R4 the homogeneous polynomial

§ = pulx, = Y a0

il =m

has no real zero & R¥ apart from ¢ =0. This polynomial-valued function
Pulx, &) is called the principal symbol of the operator L.

We understand the term pseudodifferential operator on RY in the sense
used in [8, chap. XVIHT]. A pseudodifferential operator S of order m takes
the form

fe Qo tE e plx, O(F &)

where § denotes the Fourier transform and p(x, £) is a smooth symbol,
which satisfies certain estimates. These are that for each of the multi-indices
J and k, and each compact set Kc R¥,
L "

— .,E‘(KK,-,](I -
o 9F T O S KK, RS
whenever x e K and &e R In particular, such operators § are smooth, in
the sense that they map C™ functions having compact support to C~
functions. Also, § corresponds to a Schwartz kernel that is smooth away
from the diagonal [8, p.69]. Thus if fe &, then Sf is smooth away from
the support of f.

Note that pseudodifferential operators may be of non-integral order. An
operator that is of every real order is said to be of order — .

We call a pseudodifferential operator of order m with symbol p(x. &)



O’'FARRELL—Removable singulariries 137

elliptic of order m if for each compact KcR? there exist x>0 and R > 0
such that

Ip(x, &) > k&)™ whenever xe K, |&| > R.

ForO<a<l, Liba denotes the space of those f: RY — C for which there
exists x> 0 such that

| S F O < dx—y1% Vx, ye R

Lipa becomes a Banach space when given the norm

|/ e = |/ (©)]+leastx.

For ke and 0 < @ < 1, Lip(k+ o) denotes the space of those fe Lipa such
that all partial derivatives d'f of order |i| < k also belong to Lipa.

The space Lipf is ‘locally equivalent’ (sec below) to the space L™~ Lipf
of bounded clements of LipS, and also to the space LipB, of compactly-
supported clements of Lipf. As a result, for each differential operator L,
the L-Lipf-null sets are precisely the same as the L-(L”nLipf)-null sets,
and as the L-Lipf-null sets. This also works for pseudodifferential
operators, S, but is slightly less obvious. It depends upon the fact that Sf
is smooth away from the support of f.

Taibleson [13] proved that for 0 < f¢ Z, and any fixed integer k > §,
L*~Lip# may be described as the space of those fe L™ such that there
exists a constant x> 0 {depending on /), with

k
E"Pr*f

ait <waf -k ves 0, (1)

where £, denotes the Poisson kernel. There is a detailed account in [11].
Practically the same proof (cf. section 3 below) shows that f ¢ Lipf,, if and
only if f ¢ & and there exists x> 0 such that inequality (1) holds for each
(or any one) integer k> f. For f=R, we use Ty to denote the space of
those fe ¢ such that there exists x> 0 satisfying (1) for each (or any one)
non-negative integer k > . Thus Ty = Lipf, for =0, and for non-positive
B, T provides a natural way to extend the scale of Lipf,, spaces. For §< 0,
distributions Fe Tz have compact support and satisfy the estimate

P, * fl< xt? vr>0, (2)

for some constant x = 0.

The spaces T for negative f are the ‘negative Holder spaces’ of the
title. We are going to present a general removable-singularities result for
these spaces.

Those experienced in function space theory will here be reminded of the
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controlled-mean-value spaces introduced by Morrey. Morrey’s spaces were,
however, spaces of locally-integrable functions, and were not complete in
the natural topology. The spaces T are spaces of more general distributions,
and are complete. Also, the index f is unrestricted here, whereas with the
Morrey spaces it was only sensible to consider § down to —d. See also [16,
183—47], where a similar limitation is observed.

A few examples of negative order Hélder functions are in order. On R,
the Dirac delta functional

e

belongs to T"_,, and its derivative

af
S =2 (0)

belongs to T_,. The principal value functional

~f—(:‘c—)dx

X

B PV,

(the ‘function’ 1/x) also belongs to T ;. If a function on R? has compact
support and is bounded, then it belongs to every 7, with f<0. On R a
function in L}, belongs to T whenever f< —1. On R%, this is not true, but
it is true that all L? functions with compact support belong to T_,. On R,
the usual measure supported on the Cantor set (log;2-dimensional Hausdorff
measure) belongs to T, where e =log, . A function on R? representing an
ordinary crack, i.e. continuous except for a jump discontinuity across a
smooth curve, would belong locally to 7.

The results in this paper will apply to the spaces 7 in many cases of
integral f§, but these are not classical Lipschitz spaces. For integral B, the
spaces 1 are closely related to the Zygmund class. For S=k, a positive
integer, Tp is locally-equivalent to the space of those functions having
compact support whose derivatives of order k—1 lie in the Zygmund class.
The space T, is rather close to, but not identical with, the space BMO. (It
has been described as a Bloch space, but that term is often reserved for the
case d = | and situation where the Poisson transform P, *f is analytic in
the upper half-plane.) [t contains some distributions that are not
representable by integrable functions. Thus, we have nothing to say here
about the L-Lipk-null sets (k = 1,2,3,...) or the L-BMO-null sets.

For properties of Hausdorff content MP5 we refer to [3]. As a matter of
convenience, we define M P for <0 to be M° Observe that M(E) equals
0, 1, or +x according as E is empty, non-empty and bounded, or
unbounded.

We now state the main result, the 1-reduction, in this context.

Theorem 1. Let K be a compact subset of R, and let B € R. Let S be a
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pseudodifferential operator of order m on RY. Then K is S— Tg-null if K is
| =Ty ,null. If, in addition, S is elliptic of order m, then, conversely, K is
1 =Ty ,null if K is S—Tg-null.

The characterisation of the 1 - Tg-null sets is due to Dahlberg [4], and
is as follows.

Dahlberg’s Theorem. Let K be a compact subset of RY, and let 0#8 € R.
Then the following are equivalent:
(1) K is 1=Tg-null, i.e. 0 is the only distribution belonging to Ty with
support in K;
() M*AK)Y=0.

Dahlberg, in fact, proved a more general result about subharmonic
functions in Lipschitz domains. The restriction that f#0 is necessary. If
B =0, then it is known that (1) implies {2), but not conversely.

Combining Dahiberg’s Theorem and the !-reduction, we obtain the
following corollary.

Corollary 2. Let K be a compact subset of RY, and let feR. Let S be an
elliptic pseudodifferential operator of order m on RY. Suppose pB#m. Then K
is §—Tynull if and only if M**P "(K) = 0.

The result for differential operators is worth stating separately.

Corollary 3. Let K be a compact subset of R and let feR. Let L be an
elliptic differential operator of order m on R? having C™ coefficients. Suppose
B#m. Then K is L—Tg-null if and only if M**P~™(K)=0.

We remark that the result is essentially local, and so transfers
automatically from R to arbitrary €™ manifolds.

Corollary 2 has some interest when applied to a parametrix for an
elliptic differential operator. By duality it then yields an approximation
theorem in the Besov space Bj,. We state the more general version for
pseudodifferential operators. This applies as well, for instance, to
approximation by some potentials and by Cauchy transforms. There is a
possible global obstacle to the approximation, so we state the result in
terms of the space BY ., of functions that belong locally to B{,. This is a
Fréchet space, when topologised in the natural way. We also impose a
technical restriction,

Corollary 4. Let se R, and let S be an elliptic pseudodifferential operator
of order m, admitting pseudodifferential operators Q and R of order —m such
that Q5 = SR =1 on the compactly-supported distributions. Suppose s+m is
non-zero. Then the following are eguivalent:

(1) each fe B is the limit of a sequence of functions ¢, e G which
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satisfy S¢, =0 near K.
(2) Md+m—5(K) = 0.

The restriction that there exist parametrices ¢ and R of the type
specified can be relaxed, but as it stands it covers many interesting examples.
[t is satisfied for all translation-invariant operators, in particular.

Qur approach to the proof of Corollary 2 differs from the classical
proofs of the known special cases, and thus provides a new way to view
those cases. Here are some further examples, beginning with an example on
Dahlberg’s Theorem.

Example 1. The 1 operator on R.

We are talking here about the harmonic extension to the upper half-
plane of distributions on R. The main consequence of Theorem 1 is that
for B> 0 the compact K = R supports f with

K
P, * fl< 55 V>0

if and only if M'~#K)>0. The interesting range of fis 0 << 1. For
f= 1, each non-empty K supports such distributions.

Example 2. The ¢ operator on C. For f+#1, the compact K is EgTﬁ-null
if and only if M'*#(K) = 0.

For 0 < f< 1, this is Dolzhenko’s Theorem. The result is new for
—1< f#<0. It explains the real significance for analytic functions of the
condition M%K)=0, when 0< a< 1. Carleson [2] found a connection
between this condition and a Holder class of mudriple-valued analytic
functions, related to analytic differentials. The present result shows that the
removability theorems for forms and functions differ by an order of
smoothness.

We mention in passing the rather deeper result of Nguyen [10] that the
d-Lipl-null sets are also the sets of area zero. Nguyen has also shown that
the statement as given fails for = 1: there do exist sets of area zero which
are not é — 7,-null.

One direction of the case f=0 is implied by Kaufmann’s theorem that
M!(K) =0 characterises the o-BMO-null sets. The result shows that the
~BMO-null sets are the same as the (potentially-scarcer) &~ Ty-null sets.

Example 3. The Laplacian. For f#2, the compact Ke R? is 4— Tg-null if
and only if

MP2K)y= 0.
The result yields new information whenever d 3. It concerns the

growth in the half-space R4"! of the Poisson transform of distributions
harmonic on R~ K. It also yields new information in the case f=1. d > 3.



O’FARRELL—Removahle singularities 141

The case f=1, d=2 (the Zygmund class in the plane) was previously
known to Verdera, and was communicated privately to the author.

Example 4. & on C.

Solutions of &f =0 take the form g(z)+A(z)z, with g and A analytic.
These have been used as ‘complex potentials’ to study elastic plates, in
essentially the same way as analytic functions are used in connection with
ideal fluids. The non-null-sets are then possible singularities in solutions to
the elasticity equation, ie. loci along which the plate is ‘clamped’ or
‘cracked’. Corollary 3 shows that null-sets for & and Tg(B+#2) are precisely
the same as for the Laplacian.

Apart from the cases f=1 of Example 3 and 0< < | of Example 4,
the examples so far involve no new information about classical functions,
as opposed to distributions. More new facts about genuine functions appear
when we consider operators of order at least 3. We have already mentioned
the bi-Lapiacian. Here is one more.

Example 5. & on C.

This concerns removable singularities for functions locally representable
as f(z)+Zg(z)+Zh(z) with f, g and k analytic. The result is that for 8#3,
K is removable for such functions of class T if and only if M#"%(K)=0.
The interesting range is 1 < f<3. The range 2< f<3 is covered by
Verdera’s theorem, and the range 1 < < 2 is new.

Example 6. The Cauchy transform.

As an example of a non-differential operator, consider the Cauchy
transform, € on C. This is a parametrix for J and is elliptic of order — 1.
Strictly speaking, it is not covered by the discussion, because its symbol
has a singularity at the origin. In general, if p(x, &) is the symbol of an
elliptic pseudodifferential operator, then 1/p(x, &) is not usually smooth,
and must be modified (e.g. by replacing it by w(&)/p(x, £), where we#,
y=0 near 0, and w=1 off a ball) in order to obtain a symbol for a
parametrix. If we do this to €, we get an operator which differs from € by
a smoothing operator, and then we can apply Corollary 2. The result is
that for f+1 3 0. the €— T;-null compact sets are those with M A K) >0.
The interesting range is —3 < f< —1, in other words we are talking about
rather bad distributions. But that means that the dual approximation result
is about rather nice functions. It states:

For s # 1., the smooth functions holomorphic near a compact KeC are
dense in BY | if and only if M* " (K)=0.

Focussing on the positive 5, we see that the approximation is always
possible when 0 < s < 1, and never possible (unless K = ) when s=3, and
that for 1 <5 <3 it depends on the (3 —s)-dimensional Hausdorff content.
This provides yet another answer to the question (cf. Example 2): what
does M* have to do with holomorphic functions? The same kind of analysis
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applied to the Newtonian potential yields an approximation theorem for
harmonic functions:

For s#2, the smooth functions harmonic near a compact KeRY are dense
in B, if and only if M“"°(K) = 0.

We remark that the spaces B, are related to derivatives and potentials
of Hardy spaces.

Also, the results presented in this paper have counterparts for the ‘little
lip’ spaces. The Hausdorff content has to be replaced by the lower Hausdorff
content. The modifications are routine.

3. Function space properties
In this section we assemble the facts we shall need about function spaces
and the mapping properties of pseudodifferential operators.
We denote the space of test functions on k¢ by Z, and the space of
distributions by & ’. We regard Z as a subspace of &, in the usual way
(i.e. by identifying fe & with the distribution

P ¢fdx).

Ired

The product of the test function ¢ and the distribution f is the distribution
¢f, given by

Lw @f > =<y, [, VyeZ,

The complex conjugate f of a distribution f is defined by

Cw, [>={w, f). Yyed.

We denote the group of invertible affine transformations of R by Aff. For
TeAff and fe 7', we define the composition = T by

(y, fo Ty=(det TY 'Ky T, >, Yyed.

A symmetric concrete space (SCS) is a complete locally-convex topological
vector space F such that

(1) & =~ Fes G

(2) F is a topological & -module, under the above action;

(3) f~ fis a TVS automorphism of F;

(4) for each T'cAff the map ¢ : /> f> T is a TVS automorphism of F,
and the map T b ¢; sends compact subsets of Aff to equicontinuous
sets of automorphisms.

This is what we mean by a ‘reasonable’ space.
When regarded as spaces of distributions, Lipf (8>0) and T (f real)
are SCS, as is readily seen.
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Given an SCS, F, we construct the spaces

F. =2 F
Fioc = &EF.

With the natural topologies, these are also SCS.

We say that two SCS, F, and F,, are locally-equivalent if F\jo. = Fyq,
We use the notation F| = F,. For such spaces, the L—F|-null sets coincide
with the L— F,-null sets, for each differential operator L. This is evident.

Lipg is, of course, locally-equivalent to Lipf8,, and Taibleson’s theorem
implies that Lipf, = T when 0 < ¢Z. We need the fact that 7; may be
described in several superficially different ways.

Lemma 5. Let f be real, let k, | and m be integers greater than B, and let
f be a distribution on R having compact support. Then the following are
equivalent.

(1) There exists x>0 such that

ak
=% Pief (1)

'S L

whenever xeRY and t >0.

(2) There exists x>0 such that

o i
d
z a—jPI*f(x. t)‘-.{x"t'aﬂr

i=1 Xj

whenever xeRY and t > 0.

(3) There exists k> 0 such that

I m ) .
¥ e Poaf(x, k- A"

[il=rm

whenever xeRY and t 0.

ProorF. This is proved in almost precisely the same way as the
corresponding facts in {11, pp 142 and following]. Stein is working under
the hypothesis fe L™, but the hypothesis that / has compact support does
just as well. For instance, on p. 144 we still get

J
F:j-»o as ytoo,

because
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P, .
-kt = 0ed as yToo,

X

uniformly over all transiates, because

J P,
a—” (x) = (—4 f) (x)
x',~

0x;

X

i

-+ 0 uniformily in x. W

The natural SCS topology on T, represents it as the strict inductive
limit of the Banach spaces {feLipp:sptfc K}, where K runs over all
compact subsets of R. The fact that it is not actually a Banach space will
not cause us any difficulty.

Differential operators of order m map T, continuously to Ty ,, but
that is too much to ask of pseudodifferential operators.

For an operator 4 and an SCS F, we say that F is weakly-locally A-
invariant if A maps F_ continuously into £ ..

Theorem 6. If S is a pseudodifferential operator of order meR, and feR,
then S maps Ty continuously into Tg_ 4

Remarks. This theorem seems to be widely known, but I have not found
it written down in this complete form. The manner in which pseudodifferential
operators are defined is designed to ensure that an operator of order m is
roughening of order at most m (smoothing of order —m) on the scale of L’
Sobolev spaces:

H = (F)'I(1+1€) 7% - L,

ie. maps H* — H’~™ This property is enough for many applications, and
most people prefer to use it than to go to the trouble of establishing
Schauder-style bounds.

Proor. For differential operators, the result is easy.

For the case where § is translation-invariant and >0 the result is very
old. The case of non-integral #>0 is more or less due to Frostman, and
Zygmund [18] essentially did the integral case. To quote a specific proof,
(12] contains a short clever proof of the analogue on the torus of the case
m =0, 0 < Bf<!. On the torus, the T, and T, coincide. In Euclidean space,
the statement becomes false without the  and ;.. But with this modification,
Taibleson’s proof carries over word for word. We will see below how to
transfer the result from the range fe(0, 1] and m =0 to all real § and m.
Thus, for the case which is, after all, the most interesting, the result is quite
accessible.
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From the lore on the translation-invariant operators, we extract and
record the case of the Bessel transforms. These are the operators J,, with
symbols {1 4|&7) ™2

Lemma 7. If meR and BeR, then J, maps Ty into Ty o

Proor. This may be secen by imitating the argument in [11, 149-50],
employing, as with Lemma 5, the assumption of compact support in place
of boundedness. H

For the case where § is a parametrix for a properly elliptic differential
operator of order —m, and f>0, the theorem is implied by a theorem in
Triebel [16, {4.3.4) pp 235-6] (the apotheosis of the Schauder estimates), in
view of the fact that Bﬂ_,)o is locally-equivalent to T (In a properly elliptic
operator the principal symbol £ p(x. &) has distinct roots off the real
space for each xeR%)

The general case with orderS = 0 of Theorem 6 is covered by the results
in {14]. This proof uses Triebel’s elaborate and powerful machine, and so
lies quite deep. The case orderS =0, 0 < §< 1 is also covered by a theorem
proved in Lemarie’s thesis {9, [1.2, thm A(b), p. 34], in view of the facts
that (1) his spaces A“ are locally equivalent to 7T, (0<a< ) and (2)
pseudodifferential operators of order 0 are cxamples of what he calls SIOs
of order 0 and class 1. His proof is not all that short, but it is completely
elementary. We state this case as a lemma.

Lemma 8. If S is a pseudodifferential operator of order 0, and 0 < f< 1,
then Ty is weakly-locally S-invariant.

Now we can complete the proof of Theorem 6. Let § be a
pseudodifferential operator of any order meR and let § be any real number.
Write m = y+38, with 0 < f—y<1. Let ¢. ¢ ¢5. ¢y, € & be any test
functions. Then J$.S¢-J, is a pseudodifferential operator of order 0, hence
maps Tp_, into Tp_ ... Applying Lemma 7, A =J b/ ;.S¢J ¢4/, maps
Tginto Ty o

Given a closed ball B. consider ¢, that equal 1 near B. For ges, the
differences

S sl - g
and
S g -8
are smooth near B. Thus Ag—Sg is C” near B, so that S§ maps each fe T}

to a function that, near B, differs from something in 7;_,, by a smooth
function. This is enough. Wl
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4, Proof of Theorem 1

We begin by recording a fundamental fact about the existence of
parametrices (cf. [8, p.72]).

Lemma 9. Let S be an elliptic pseudodifferential operator of order m. Then
there exists a pseudodifferential operator Q of order —m such that SQ—1
and QS —1 are pseudodifferential operaiors of order —cc. B

Now we can finish the proof of Theorem 1.

(1) Let K be 1 —Tg_,-null.

Let U=RY be open, fe T, ge& and Sf=g on U~K.

Then, by Theorem 6, Sf€ Ty, Thus Sf=g on U. That proves one
direction.

(2) Assume S is elliptic. Let K be §—T5-null.

Let UcR? be open, fe Ty, and /=0 on U~ K. We wish to show that
S=0on U. We may assume that U/ is a ball.

By Lemma 9, there exists a pseudodifferential operator QO of order —m
such that SQf = f+ h, where he&. By Theorem 6, Qfe Ty. Pick ¢eZ with
¢ =1 on a neighbourhood of clos(U/). Then

S(¢- QUM =f+h+S((1-PQ () =/+k, say.

Since k¥ is C™ on U, and Tp 15 a % -module, we conclude that

S(¢- QUM =k on U.
hence f=0 on U, as required. Wl

5. Duality

Here we discuss the proof of Corollary 4, assuming familiarity with the
Besov spaces. We use the notation of [16].

First, by a result of Triebel [15], B, . is locally equivalent to T, for
s >0. Since B , is invariant under the classical Calderon—Zygmund SIO,
this equivalence extends to all s, in view of the ‘fundamental theorem of
calculus’ for function spaces, explained below. Thus we may replace Ty by
BE « in the statement of Corollary 2.

Gwen an SCS, F, we define new spaces

DF={:1+ mil+ Ff”’ t i Sy F, AeC }
ax,
and
_ i %
j‘F-{feQ : ax[, Bxd }
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These become SCS when topologised in the obvious ways.
loc I
Lemma 10. DT;= Ty, and [Ty= Ty, whenever PeR.

Proor. Apply the fact that condition (2) in Lemma 5 is equivalent for any
two different />5 W

Lemma 11, If an SCS F is weakly-locally invariant under all pseudodifferential
operators of order 0, then so are {F and DF.

Proor. Fix a pseudodifferential operator S of order 0. For 1</<d, the
commutator [.S, #/] is a pseudodifferential operator of order 0, and hence
maps F, to F,. This is enough. W

Lemma 12 (fundamental theorem of calculus), Ler F be a symmerric
concrete space that is weakly-locally invariant under the classical Calderon—
Zygmund singular integral convolution operators. Then

loc _loc

j DF=F=D j F.
Proor. For general SCS, F, we have
Fcf DFand D | FoF,

i

To see that F <& DfF, fix feF, Let B be the Newtonian potential,
inverting the Laplacian. Then all second derivatives of Bf belong to Fj,.
since they are Calderon-Zygmund singular integral operators applied to f.
Thus

2

8xj

8f€ _[ F (j= 15'---.d)1

from which it follows that f= ABf belongs to DfF.
To see that [DF < F, fix fe(JDF), Fix ¢, equal to 1 on a
neighbourhood of the support of f. There exist g;, € & such that

Y5 B
dx; k=1 Ox;

J !

It follows easily that

52
f=BAf= Zk B —— (g0
A

0x;0xy

which belongs to F),, since
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3 2
0x;0%;,

is a Calderon—-Zygmund SIO. R

Continuing with the proof of Corollary 4, we now let @ and R be
pseudodifferential operators of order —m such that QS=SR=1 when
restricted to compactly-supported distributions.

The dual of 87, is B7%. [16. 178] It follows that the dual of By 1oc 18

B’ - Condition (1) of Corollary 4 is thus equivalent to the statement :if
geB.",  and if
{¢, g> =0 whenever ¢cZ and S¢ =0 near K, (3)

then g = 0. Now condition (3) is equivalent to:
(S, O'g> =0 whenever ¢eZ and S¢ =0 near K. (4}
Using R to see one direction, we find that (4) is equivalent to
(w, Q'g> =0 whenever yeZ and y=0 near K. 3

But (5) is just the statement that sptQ’g < K. Thus condition (1) is equivalent
to the statement that K is Q' — B,*,.-null. Since the operator Q' is elliptic
of order —m, the corollary now follows from Corollary 2.1

6. Some other 1-reductions

It is probably clear to the reader that the l-reduction may be applied
to good effect with spaces other than the T4. To convert a problem about
an operator S, acting on a space F, into a problem about 1, all that is
necessary is that we be able to identify the space SF.

Take, for example, the scale of Sobolev spaces, wke for keZ, and
I < p < +o0. This scale may be imbedded, using Bessel potentials, in a full
scale W7, seR. If S is an elliptic pseudodifferential operator of order m,
then S(W*"") is locally-equivalent to W' "7 and we are in business. We
obtain the following theorem.

Theorem 13. Under the conditions just stated, the following are equivalent,
for a compact set K< R,

(1) K is §— W*"P-null.

(2y K is 1 — W " epull.

If p' is the conjugate index to p, and Q is a paramelrix for S. then the
foregoing conditions are also equivalent to:
(3) the space of all functions f that belong to W P and satisfy Q'f =0
near K are dense in WP,
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For instance, this vields new results for singularities of holomorphic
functions and approximation by holomorphic functions in W%’ norms,
reducing these to problems whose solution is known.

Corollary 14, Ler | < p<2 and KT be compact. Then:
(1) the functions holomorphic near K are dense in W>? if and only if K
is 0—LF -null;
(2) K is 0-W?*P-null if and only if the functions holomorphic near K are
dense in L7 .

(The é-Lé-null sets referred to in (1) have been described by Carleson [3],
and the sets in (2) were described by Bagby [ 1] (see also [7]).)

This approach also shows that harmonic approximation in W'*, on sets
with no interior, is equivalent to holomorphic approximation in I’ and
hence is governed by the logarithmic capacity, and the classical fine
topology of potential theory. In view of known results, this means that
W'? harmonic approximation (no interior) is equivalent to uniform
harmonic approximation. In other words, if each function ¢ may be
approximated in W!'? by functions harmonic near K, then it may be
approximated uniformly by such functions, and conversely.

We may apply the l-reduction to general Besov spaces B} . provided
we know that the operator S in question behaves well on the spaces in
question. As noted above, it does not yet appear to be established that ail
smooth elliptic pseudodifferential operators, without restriction, behave well
on all the intermediate (p# 1, «o or s ¢ Z) Besov spaces. There is no problem
with the classical operators, like J or A, or indeed any properly-eiliptic
differential operator. When the l-reduction applies, it reduces the problem
of describing the S—B; -null sets to that of describing the 1B, "-null
sets, where m = orderS. We give here a lemma which allows the reduced
problem to be converted to equivalent forms.

Lemma 15. Let F be a symmetric concrete space on RY in which & s
dense. Let K be a compact subset of RY. Then the following four conditions
are equivalent:

(VD K is | —F*null;

(2) <&, f7 =0 whenever fe F* has support in K, and ¢ satisfies ¢ = |

near K;
(3) there is a net {¢p}cF such that ¢,=1 near K and ¢, — 0 in F-
topology;

(M) {9eP : ¢ =0 near K} is dense in F.
Remark. The hypotheses imply that F* is an SCS.

Proor. The annihilator of {¢pe % : ¢ =0 near K} in F* is the set of those
of fe F’* that are supported on K. By Hahn—Banach, (1) is equivalent to (4),

(#)=(3): Fix ¢e.7, equal to 1 near K. There exist y,e %, equal to 0
near K, converging to ¢ in F-topology. Let ¢, = ¢—v,.
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(3)=(2) : (@, /> =K, /7 = 0.

(2)=(1) : Fix ¢e¢Z with ¢ =1 near K. Let feF* have support in K
For each multi-index i, the distribution x'f belongs to £* and has support
in K. Thus

(X, [ =(¢, xf>=0.

Thus f annihilates the polynomials, hence annihilates &, hence annihilates
F, hence 1s 0. @

In the formulation (3), and in the case of general Besov spaces, the
problem of characterising such K has been studied by D. R. Adams. The
space B, is, except in the cases p=1 or g= 1, the dual of the closure of
Z in F :B',';,. Adams has assembled and extended previous work to

P
provide an alternative description of the capacities

inf{||@ll g+ : €&, ¢=1 near K}

in terms of potentials, and has worked out the relation between these
capacities and the Hausdorff measures. Details will appear in a book to be
published by the Banach Centre, Warsaw. There is a preprint by Adams
on this subject, “The classification problem for the capacities associated with
the Besov and Triebel-Lizorkin spaces’ (Mathematics Department, University
of Kentucky).

ACKNOWLEDGEMENT

The author is extremely grateful to Stephen Gardiner for his assistance
and advice during the preparation of this paper, and to Joan Verdera for
many valuable conversations.

REFERENCES
{t] Bagey, T. 1972 [L” approximation by analytic functions. J. dpproximation Theorr 5,
4014,
[?] CarLeEson. L. 1950 On null-sets for continuous analytic functions. Arkiv fér Math. 1,
311-18.

[3] CarLESON. L. 1967 Selected problems on exceptional sets. Princeton, N.J. Van Nostrand,

[4] DAHLRERG, B. E.J. 1977 On exceptional sets at the boundary for subbarmenic functions.
Ark. Mai. 15, 305--12,

[5] DovLzenko. E. P. 1963 The removability of singularities of analytic functions. Uspekhi
Mat. Nauk 18, 4 (112), 13542,

{6] Harvey. F. R, and POLKING, J. 1970 Removable singularities of solutions of linear
partial differential equations. Acta Math. 125, 39-56.

[7] Hepeerg, L. I 1972 Approximation in the mean by analytic functions. Trans. Am.
math. Soc. 163, 157-71.



O’'FARRELL-—Removable singularities 151

[8] HORMANDER, L. 1985 The analvsis of linear partial differential operators, vol. 111. Beriin /
Heidelberg. Springer.

[9] Lemarige, P. G. 1984 Algebres d'opérateurs et semi-groupes de Poisson sur un espace de
nature homogéne. Thése. Publications Mathematiques, Université de Paris-Sud, Centre
d'Orsay.

[10] Neuyen, X. Uy 1979 Removable sets of analytic functions satisfying a Lipschitz
condition. Adrkiv for Math. 17, 19-27.

[11] SteEN, E. M. 1970 Singular integrals and differentiability properties of functions. Princeton
University Press.

[12] TamBLEsoN, M. H. 1963 The preservation of Lipschitz spaces under singular integral
operators. Studia Math. 24, 107-11.

[13] Tamreson, M. H, 19646 On the theory of Lipschitz spaces of distributions on
Euclidean n-space L. J. Math. Mech. 13 (1964}, 407-80; 11, ibid. 14 (1965), 821-40; 111,
ibid. 15 (1966), 973-81.

[14] TrieseL, H. 1976 Multipliers in Besov spaces and in L“f-spaces ({the cases O<p<1 and
p=w). Math. Nachr. 75, 229-45.

[15] TriesEL, H. 1978 On spaces of B, type and C* type. Math. Nuchr. 85, 75-90.

[16] TwrieBeL, H. 1983 Theory of function spaces. Basel/Boston/Stuttgart. Birkhiuser.

[7] VERDERA, J. 1987 ™ approximation by solutions of elliptic equations, and Calderon—
Zygmund operators. Duke Math. J. 55, 157-87.

[t8] Zvcmunp, A. 1945 Smooth functions. Duke Math. J. 12, 47-76.






