THE ORDER OF A SYMMETRIC CONCRETE SPACE

By A. G. O'FARRELL, M.R.I.A.

Department of Mathematics, Maynooth College, Co. Kildare

[Received 7 September 1987. Read 16 March 1988. Published 29 July, 1988.]

ABSTRACT

We give a simple characterisation of those symmetric concrete spaces that inject locally into C^k on \mathbb{R}^d .

1. Introduction

The purpose of this paper is to establish a general theorem of Sobolev type. The theorem tells us when a function space on \mathbb{R}^d imbeds into the space C^k . It applies to all reasonable function spaces, such as L^p spaces, Sobolev spaces, Besov spaces, Zygmund classes, Campanato spaces, and so on. Specifically, it applies to all spaces F in the class of symmetric concrete Banach spaces, defined below. The theorem identifies the one crucial property that is involved in deciding whether or not F imbeds in C^k . That property is the behaviour of the F-norm of monomials on small balls.

Let \mathscr{D} denote the space \mathscr{D} (\mathbb{R}^d , \mathbb{C}) of complex-valued test functions on \mathbb{R}^d , and let \mathscr{D}' denote its dual, the space of distributions on \mathbb{R}^d . With their usual topologies, these are topological vector spaces, and \mathscr{D}' is a topological \mathscr{D} -module.

We say that a complete locally-convex topological vector space F is a symmetric concrete space $(F \in SCS)$ if it has the following four properties.

- (1) $\mathscr{D} \subset F \subset \mathscr{D}'$, and the inclusions are continuous. Here, as is usual, we identify \mathscr{D} with a subset of \mathscr{D}' .
- (2) F is a topological sub- \mathcal{D} -module of \mathcal{D}' .
- (3) $f \to \overline{f}$ is bicontinuous, from F onto F. Here, the complex conjugate \overline{f} of the distribution f is defined by

$$\langle \phi, \overline{f} \rangle = \overline{\langle \overline{\phi}, f \rangle}, \forall \phi \in \mathcal{D}.$$

(4) For each $A \in Aff$, the group of invertible affine transformation of \mathbb{R}^d , the map $f \to f \circ A$ is a continuous linear map of F into itself. Moreover, compact sets of affine transformations induce equicontinuous sets of endomorphisms of F. Here, the composition $f \circ A$ is defined by

$$\langle \phi, f \circ A \rangle = \langle \phi \circ A^{-1}, f \rangle \cdot \det(A)^{-1}, \forall \phi \in \mathcal{D}.$$

If an SCS is a Banach space, then we call it an SCBS. Given $F \in SCS$, we define the spaces

$$\begin{split} F_{\text{loc}} &= \big\{ f \in \mathcal{D}' : \phi f \in F, \, \forall \phi \in \mathcal{D} \big. \big\} \\ &= \mathcal{E} \cdot F, \end{split}$$

where \mathscr{E} is the space of all infinitely-differentiable functions, and

$$F_{cs} = \mathcal{D} \cdot F = \{ f \in F : \operatorname{spt} f \text{ is compact} \}.$$

For X compact in \mathbb{R}^d , we consider the subspace

$$JF(X) = \operatorname{clos}_{F} \{ f \in F : X \cap \operatorname{spt} f = \emptyset \}$$

and we define F(X) as the quotient space

$$F(X) = F/JF(X) .$$

with the quotient topology. If F is Banach, Fréchet, or barrelled, then so is each F(X). We may topologise F_{loc} and F_{cs} , in obvious ways, and they then become symmetric concrete spaces.

We say that two SCSs, F and G, are locally equivalent if $F_{loc} = G_{loc}$ as sets and as topological vector spaces. We use the notation $F \stackrel{loc}{\hookrightarrow} G$ to mean that $F_{loc} \subset G_{loc}$, and the inclusion is continuous. In other words, $F \stackrel{loc}{\hookrightarrow} G$ means that for each compact $X \subset \mathbb{R}^d$ there is a compact $Y \supset X$ such that the restriction $f \to f \mid X$ maps F(Y) continuously into G(X).

By C^k , (k = 0, 1, 2, ...) we denote the Fréchet space of k times continuously differentiable functions $f: \mathbb{R}^d \to \mathbb{C}$. The spaces $C^k(X)$ are Banach spaces, and C^k is locally equivalent to a Banach space, namely

$$\mathsf{BC}^k = \mathsf{C}^k \cap \{f : \sup_{0 \le j \le k} |D^j f| \text{ is bounded on } \mathbb{R}^d \}$$
.

2. Order

Let F be an SCBS. The function defined on $(0, \infty)$ by

$$\theta_k(r): r \mapsto ||x_1^k||_{F(B(0,r))}$$
 $(k = 0, 1, 2, ...)$

is increasing with r, and positive, so that $\lim_{t\to 0} \theta_k(r) = \int_{def} \theta_k$ exists and is non-negative. If $\theta_k = 0$, then the \mathscr{D} -module property of F yields $\theta_{k+1} = 0$. Thus the set

$$\Sigma = \{k \in \mathbb{Z}_+ : \theta_k \neq 0\}$$

is \emptyset or is an initial segment of \mathbb{Z}_+ . We define

$$order(F) = \sup \Sigma$$
.

Thus, order(F) may be $-\infty$, $+\infty$, or a non-negative integer. It is $-\infty$ when Σ is empty.

For instance, the reader may check that the order of C^k is k, the order of $\text{Lip}\alpha$ is 0 (for $0 < \alpha < 1$), the order of L^p is $-\infty$ for $p < +\infty$ and 0 for $p = +\infty$. For further examples, see section 3 below.

In the definition of order, it makes no difference if we replace 0 by some other point of \mathbb{R}^d . Nor does it matter if we replace the monomial x_1^k by any other homogeneous polynomial of degree k. These facts follow from the invariance of F under composition with elements of Aff.

If $F \stackrel{\text{loc}}{\hookrightarrow} G$, then $\text{order}(F) \geqslant \text{order}(G)$. Thus the order depends only on the local equivalence class.

We can now state the theorem.

Theorem. Let F be an SCBS and suppose $order(F) \ge k \ge 0$. Suppose also that \mathscr{D} is dense in F. Then $F \stackrel{loc}{\hookrightarrow} \mathbb{C}^k$. Conversely, if $F \stackrel{loc}{\hookrightarrow} \mathbb{C}^k$, then $order(F) \ge k$.

The order of F depends only on $\operatorname{clos}_r \mathcal{D}$, so the restriction that \mathcal{D} be dense in F is essential in the first part. For instance, L^{∞} has order 0.

PROOF. The converse is trivial, since $F \stackrel{\text{loc}}{\hookrightarrow} G$ implies $\operatorname{order}(F) \geqslant \operatorname{order}(G)$.

To prove the main assertion, suppose F has order at least k. We will show that $F \stackrel{\log}{\hookrightarrow} C^k$.

It suffices to consider the case when the order of F is exactly k. For otherwise we may pass to the (Banach!) space $F + BC^k$.

For $a \in \mathbb{R}^d$, the relation $\stackrel{*}{\sim}$, defined by

$$f \stackrel{a}{\sim} g \Leftrightarrow ||f - g||_{E(B(a,r))} \downarrow 0 \text{ as } r \downarrow 0$$

is an equivalence relation on F. For $\phi \in \mathcal{D}$, the equivalence class of ϕ contains exactly one polynomial of degree $\leq k$, namely $T_a^k \phi$, the kth order Taylor polynomial of ϕ about a.

The function

$$p\mapsto\inf_{r>0}\|p\|_{F(B(a,r))}$$

is a norm on $\mathbb{C}[x]_k$ (= the space of polynomials of degree at most k on \mathbb{R}^d), and hence is equivalent to any other norm on $\mathbb{C}[x]_k$.

Property (4) implies that bounded families of translations act equicontinuously on F, and hence the different norms corresponding to a bounded set of points a are uniformly equivalent.

For $f \in F$, if $\phi_n \in \mathscr{D}$ and $\|\phi_n - f\|_F \to 0$, then $\{T_a^k \phi_n\}_{n=1}^{\infty}$ is a Cauchy sequence in $\mathbb{C}[x]_k$, and thus we may define a polynomial $T_a^k f$ by

$$T_a^k f = \lim_{n \uparrow \infty} T_a^k \phi_n .$$

This polynomial is independent of the choice of $\{\phi_n\}_1^\infty$ converging to f in F norm. Moreover, the $T_a^k\phi_n$ converge to T_a^kf uniformly in a, provided a is restricted to any compact set. Thus, since the $T_a^k\phi_n$ are continuous in a, it follows that the T_a^kf are continuous (i.e. continuously-varying polynomials in x) in a.

Define $g \in \mathbb{C}^0$ by $g(a) = (T_u^k f)(a)$. When $\phi_n \to f$ in F, it follows that $\phi_n \to f$ in \mathscr{D}' . Since

$$\phi_{\scriptscriptstyle n}(a) = T^{\scriptscriptstyle 0}_{\scriptscriptstyle n} \phi_{\scriptscriptstyle n}(a) \to T^{\scriptscriptstyle 0}_{\scriptscriptstyle n} f(a) = g(a)$$

uniformly on compacta, it follows that $\phi_n \to g$ in \mathscr{D}' . Thus g represents the distribution f.

To see that $T_a^k f$ is actually the Taylor polynomial of g at a, we argue inductively. It suffices to give the argument for the identity

$$\frac{\partial g}{\partial x_1} = \frac{\partial}{\partial x_1} T_a^k f \text{ at } a.$$

If B is a ball about a, then

$$\phi_a \rightarrow g$$

$$\frac{\partial \phi_n}{\partial x_1} \to h$$

uniformly on B, where $h(b) = \frac{\partial}{\partial x_1} (T_b^k)(b)$. An elementary argument then yields that

$$\frac{\partial g}{\partial x_{\cdot}} = h$$

inside B, which yields the desired result on evaluation at a.

That's it.

3. Examples

We illustrate the theorem by working a few examples. The only novelty here is the point of view: all the results are known (see, for instance, Triebel 1983).

Example 1. VMO.

Consider the Sarason space VMO, of functions of vanishing mean oscillation. A function $f \in L^1_{loc}(\mathbb{R}^d)$ belongs to VMO provided that

$$\sup_{\substack{Q \text{ a cube} \\ 0 < |Q| \le \epsilon}} MO(f, Q) \to 0,$$

as $t \downarrow 0$, where

$$MO(f, Q) = \inf_{c \in C} \frac{1}{|Q|} \int_{Q} f(x) - c |dx|$$

denotes the mean oscillation of f on Q. A norm on VMO is

$$f \mapsto \int_{B(0,1)}^{1} |f(x)| dx + \sup_{0 \le |Q| \le 1} MO(f, Q).$$

With this norm, VMO is an SCBS, and \mathcal{D} is dense in VMO.

Now VMO has order $-\infty$, i.e. it does not inject locally into C^0 . The natural way to see this is to write down some function f with $f \in VMO \sim C^0$. But in the spirit of the present discussion, we show it by proving that $\theta_0(r) \to 0$ as $r \downarrow 0$, i.e. there exist functions $\phi \in VMO$ such that $\phi = 1$ near 0, yet the VMO-norm $\|\phi\|$ is near 0.

Take b > 0, small, and let $\phi \in L_{cs}^1$ be defined by

$$\phi(x) = \max\{0, \min\{1, 1+b-|x|^b\}\}\$$

for $x \in \mathbb{R}^d$. Then $\phi = 1$ near 0 and the VMO norm of ϕ is bounded by a constant times b.

Example 2. Sobolev spaces.

For $0 \le k \in \mathbb{Z}$ and $1 \le p \le +\infty$, the Sobolev space $W^{k,p}$ consists of those $f \in L^p$ such that all (distributional) partial derivatives ∂f of order $|i| \le k$ are representable by integration against L^p functions. With the norm

$$f \mapsto \|f\|_{L^p} + \|D^k f\|_{L^p},$$

the space $W^{k,p}$ becomes an SCBS. The subspace $\mathscr D$ is dense, provided $p<+\infty$. Sobolev's theorem says that $W^{k,p}$ has order greater than r if kp>rp+d, and has order less than r if kp< rp+d. The cases when kp=rp+d vary. We consider a few cases.

Case 1. kp < d.

There is a constant $\kappa > 0$, depending on d and k, such that for each r > 0, there is a function $\phi_r \in \mathcal{D}$ such that $\phi_r = 1$ on $\mathbb{B}(0, r)$, $\phi_r = 0$ off $\mathbb{B}(0, 2r)$, and

$$|x|^{j} \cdot |D^{j}\phi(x)| \leq \kappa$$

whenever $0 \le j \le k$. Thus a calculation shows

$$\theta_0(r) \leqslant \|\phi_r\|_{W^{k,p}} \leqslant \kappa \cdot r^{d-kp/p}$$

(with a new $\kappa = \kappa(d, k, p)$). Thus the order of $W^{k,p}$ is $-\infty$.

Case 2. p > d, and $p < +\infty$.

We will show that the order of $W^{1,p}$ is 0.

First, consideration of the functions $x_1 \cdot \phi_r$, where ϕ_r is chosen as in the first case, yields

$$\theta_1(r) \leqslant ||x, \phi_r||_{W^{1,p}} \leqslant \kappa \cdot r^{d/p},$$

with κ independent of r. Thus the order is less than 1.

The other direction is more trouble. This is typical. We have to show that if a function $\phi \in \mathcal{D}$ is identically 1 near 0, then it cannot have very small norm.

Suppose that ϕ is such a function. Suppose that $\|\phi\|_{L^p} < \frac{1}{4}$. Then there is a set $E \subset (\mathbb{B}(0,2) \sim \mathbb{B}(0,1))$ having volume at least 1, on which $|\phi| < \frac{1}{4}$. For each $a \in E$, the line integral of $|D \phi|$ on the ray [0, a] from 0 to a exceeds $\frac{3}{4}$. Thus

$$\frac{3}{4} \leqslant \int_{\mathcal{E}} \int_{[0,x]} |D \, \phi| \, ds \, dx.$$

$$\leqslant \kappa \cdot \Big|_{\mathbf{B}_{(0,2)}} \frac{|D \phi(y)|}{|y|^{d-1}} dy$$

$$\leqslant \kappa \cdot \|D\phi\|_{L^{p}} \cdot \|y \mapsto \frac{1}{|y|^{d+1}} \|_{L^{p'}(\mathbf{B}(0,2))}$$

where p' is the conjugate index to p. The condition p > d guarantees that

$$\|\frac{1}{|y|^{d-1}}\|_{L^{p}(\mathbf{B}(0,2))}<+\infty.$$

Thus, if $\|\phi\|_{L^p}$ is very small, then $\|D\phi\|_{L^p}$ is not, so in either case $\|\phi\|_{W^{1,p}}$ is not very small. Thus $\theta_0 > 0$, as claimed.

As a final case, we consider one of the borderline cases.

Case 3. $W^{d,1}$.

As before, it is easy to show that the order is less than 1.

To see that it is exactly 0, suppose $\phi \in \mathcal{D}$ is 1 at 0. Then

$$1 = \int_{-\infty}^{0} \dots \int_{-\infty}^{0} \frac{\partial^{d} f(x_{1}, \dots, x_{d})}{\partial x_{1} \dots \partial x_{d}} dx_{1} \dots dx_{d}.$$

From this it is evident that $\|\phi\|_{W^{1,1}}$ cannot be very small.

Example 3. Campanato spaces.

Consider the scale of generalised mean oscillation spaces on \mathbb{R}^d . These were introduced by Campanato and by Meyers, following preliminary work of Morrey.

Fix $s \in [0, \infty]$ (smoothness level), $p \in [1, \infty)$ (integrability level), and $q \in [1, \infty)$ (fine tuning level). The space BMO(s, p, q) may be defined as follows.

Fix k to be the least integer greater than or equal to s.

For $f \in L^1_{loc}$ and a closed cube $Q \subset \mathbb{R}^d$, we denote by $T_Q f$ the unique polynomial $p \in \mathbb{C}[x_1, \ldots, x_d]$, such that

$$\int_{0}^{\infty} (f-p) \cdot x' \, dx = 0,$$

whenever i is a multi-index of order $|i| \le k$. We define the kth order mean oscillation of f on Q as

$$MO(f, k, Q) = \frac{1}{|Q|} \int_{Q} |f(x) - T_{Q}f(x)| dx.$$

For t > 0 and $x \in \mathbb{R}^d$, we set

$$\Omega(f,x,t) = \sup_{\substack{|Q|=t^d\\ x \in Q}} MO(f, k, Q),$$

and then we set

$$\omega(f,t) = \|x \mapsto \Omega(f,x,t)\|_{L^{p}}.$$

Finally, we say that $f \in BMO(s, p, q)$ if the function $t \mapsto \omega(f, t)/t^s$ belongs to the space $L^q(dt/t)$. A norm on this space is

$$f\mapsto \|f\|_{\mathsf{L}^{1}(\mathbb{B}(0,1))}+\left(\left[\int_{0}^{\infty}\left(\frac{\omega\left(f,\,t\right)}{t^{s}}\right)^{q}\frac{dt}{t}\right)^{1/q}.$$

With this norm, it is an SCBS, as may be seen.

Roughly speaking, the space BMO(s, p, q) is very close to the Sobolev space $W^{s,p}$ when s is integral, and for non-integral s interpolates between the integral values. The order of BMO(s, p, q) is $-\infty$ when sp < d, is 0 when d < sp < d + p, is 1 when d + p < sp < d + 2p, and so on (regardless of the value of q). The cases when one of these inequalities is replaced by equality are more delicate.

Consider the case sp < d. Estimation shows that the coefficient of x^i in the polynomial $T_{\alpha} f$ is bounded by $\kappa(d, k)$ times

(side
$$Q$$
)^{-|i|}. $\int_{0} |f(y)| dy$,

and thus

$$\int_{Q} |T_{Q}f| dx \leqslant \kappa \int_{Q} |f| dx.$$

Using this, we obtain that

$$MO(f, k, Q) \leq \kappa \inf_{p \in C(x)_k} \frac{1}{|Q|} \left| f(x) - p(x) \right| dx$$
.

Given this observation, it is not too hard to use the same functions ϕ_r of Example 1 to show that $\theta_0(r) \downarrow 0$ for BMO(s, p, q). In fact, one obtains the following: (1) for x belonging to the support of ϕ_r and for small positive t,

$$\Omega\left(\phi_{r}, x, t\right) \leqslant \kappa \cdot \left(\frac{t}{r}\right)^{k+1};$$

(2) for dist $(x, \operatorname{spt} \phi) > t$,

$$\Omega\left(\phi_{c},\,x,\,t\,\right)\,=\,0;$$

(3) for large t,

$$\Omega\left(\phi, x, t\right) \leqslant \kappa\left(\frac{r}{t}\right)^{d}$$

Thus

$$\omega\left(\phi,\,t\right)\leqslant\kappa\cdot(r+t)^{d/p}\cdot\min\{(t/r)^{k+1},\,(r/t)^{d}\},$$

and a calculation shows that the norm of ϕ_r is essentially $r^{d/p-x}$.

It seems to be a good deal harder to prove that the order is at least 0 when sp > d. I did not manage to find a proof that was shorter than the route via Campanato's identification of the space BMO(s, p, q) with the corresponding Besov space, and a classical proof of the embedding for the Besov space. To demonstrate a fairly general positive imbedding theorem, we close with the following example.

Example 4. The classical Besov spaces.

Let s, p and q be as in Example 3. Let k denote the least integer greater than s.

For $f \in L_{loc}^r$ and t > 0, consider the kth order L^r modulus of continuity

$$\omega(t) = \sup_{\substack{|h| \leq t \\ h \in \mathbb{R}^d}} \|x \mapsto \Delta_h^k f(x)\|_{L^p}.$$

Here, Δ_k^k denotes the kth power of the difference operator

$$\Delta_h: g(\cdot) \mapsto g(\cdot + h).$$

We say that f belongs to the Besov space BES(s, p, q) (or $B_{p,q}^s$) if the function

$$t\mapsto \frac{\omega(t)}{t^s}$$

belongs to $L^q(dt/t)$. A norm on BES(s, p, q) is

$$f\mapsto \|f\|_{\mathsf{L}^p(\mathbb{B}(0,1))}+\left\{\int_0^\infty \left[\frac{\omega\left(t\right)}{t^s}\right]^q\frac{dt}{t}\right\}^{1/q}.$$

With this norm, BES(s, p, q) becomes an SCBS. The subspace \mathcal{D} is dense except when p or q is $+\infty$.

Except for some of the cases when s is integral, or p or q equal 1 or $+\infty$, the Besov spaces BES(s, p, q) are in fact locally the same as the BMO(s, p, q), although this is far from obvious.

In particular, order(BES(s, p, q)) $\geqslant 0$ whenever sp > d. We will not prove this here, but will prove the weaker statement that the order of BES(s, p, ∞) is $\geqslant 0$ whenever

$$s > \frac{d}{p} + 1 - \frac{1}{p} .$$

Suppose $s > \frac{d}{p} + 1 - \frac{1}{p}$, and $\phi \in \mathcal{D}$ is identically 1 near 0. We have to show that its BES(s, p, ∞)-norm is bounded away from zero.

We may suppose that ϕ has small norm in L'($\mathbb{B}(0, 1)$), say norm at most one quarter the norm of the constant 1. Then for each small t > 0, there exists a square S of side 2t, contained in $\mathbb{B}(0, 1)$, with

$$\left(\left[|\phi|^p dx\right]^{1/p} \leqslant \frac{t^{d/p}}{4}.\right)$$

We can then construct a chain of touching congruent squares, S_1 , S_2 ,..., S_m , each of side t, with S_1 centred at 0, S_m lying inside S_n , and $S_{j+1} = S_j + h$, where |h| = t. Note that $m \le 1/t$.

Provided t is small enough, we will have $\phi = 1$ on S_1 , so we obtain the estimate

$$\frac{3}{4} \cdot t^{d/p} < \left\{ \int_{S_{t}} |\phi(x)|^{p} dx \right\}^{1/p} - \left\{ \int_{S_{w}} |\phi(x)|^{p} dx \right\}^{1/p}$$

$$\leq \left\{ \int_{S_{t}} |\phi(x) - \phi(x + mh)|^{p} dx \right\}^{1/p}$$

$$\leq \sum_{t}^{m-1} \left\{ \int_{S_{t}} |\phi(x) - \phi(x + h)|^{p} dx \right\}^{1/p}$$

$$\leq t^{-1/p'} \cdot |||\Delta_{h} \phi||_{L^{p}},$$

where p' is the conjugate index to p.

In rather similar fashion, we can obtain the higher-order estimate

$$\kappa \cdot t^{d/p} \leqslant t^{-1/p'} \cdot \| |\Delta_h^k \phi| \|_{L^p},$$

corresponding to the integer k. (For odd k we represent $\phi(x) - \phi(x + mh)$ as a sum of kth order differences, with a small error. For even k, we use an alternating sum of kth order differences, instead.) Thus, for all small t > 0, we obtain

$$\omega\left(\phi,\,t\right)\geqslant\kappa\cdot t^{d(p+1-1/p)},$$

whence the BES(s, p, ∞)-norm of ϕ exceeds κ .

REFERENCE

TRIEBEL, H. 1983 Theory of function spaces. Basel. Birkhauser.