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ABSTRACT

We give a simple characterisation of those symmetric concrete spaces that inject
localiy into C* on R

1. Introduction

The purpose of this paper is to establish a general theorem of Sobolev type.
The theorem tells us when a function space on R’ imbeds into the space C. It
applies to all reasonable function spaces, such as L" spaces, Sobolev spaces, Besov
spaces, Zygmund classes, Campanato spaces, and so on. Specifically, it applies to
all spaces F in the class of symmetric concrete Banach spaces, defined below. The
theorem identifies the one crucial property that is involved in deciding whether or
not F imbeds in C* That property is the behaviour of the F-norm of monomials
on small balls.

Let 7 denote the space # (R?, C} of complex-valued test functions on R, and
tet 2’ denote its dual, the space of distributions on R*. With their usuai topologies,
these are topological vector spaces, and 2’ is a topelogical 4 -module.

We say that a complete locally-convex topological vector space Fis a symmetric
concrete space (F e SCS) if it has the following four properties.

() ¥ =« F < 2, and the inclusions are continuous. Here, as is usual, we
identify Z with a subset of Z".
{2) Fis a topological sub-Z-module of 2.

(3) f ~ f is bicontinuous, from F onto F. Here, the complex conjugate f of the
distribution f is defined by

(B [y =Lpfr.Voed.

(4) For each A e Aff, the group of invertible affine transformation of R‘, the
map f— f» A is a continuous linear map of F into itself. Moreover,
compact sets of affine transformations induce equicontinuous sets of
endomorphisms of F. Here, the composition [ - 4 is defined by
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(pfody =(poA™,f) det(d)”', Ve 7.

If an SCS is a Banach space, then we call it an SCBS.
Given F e SCS, we define the spaces

Fo.={fed . ¢fecF Vopeg}
= & - F,
where & 1s the space of all infinitely-differentiable functions, and
F, =9 F = {feF: sptfis compact}.
For X compact in R’, we consider the subspace
JRX) = clos, {fe F: X nsptf = §}
and we define F(X) as the quotient space

FX) = FJRX),

with the quotient topology. If F is Banach, Fréchet, or barrelled, then so is each
FX). We may topologise F,, and F,_, in obvious ways, and they then become
symmetric concrete spaces.

We say that two SCSs, F and G, are locally equivalent if F,,, = G, _as sets and

log

as topological vector spaces. We use the notation F 5 G to mean that F__ < &
and the inclusion is continuous. In other words, F £ G means that for each
compact X — R’ there is a compact ¥ > X such that the restriction f — f| X
maps F{¥) continuously into G{X).

By CY (k =0, 1,2, ..) we denote the Fréchet space of k times continuously
differentiable functions f: R* — C. The spaces C(X) are Banach spaces, and C* is

locally equivalent to a Banach space, namely

loc?

BC' = C* ~ {f:sup |D'f]| is bounded on R’} .

LESE 49

2. Order
Let F be an SCBS. The function defined on (0, o) by

0(r): r— | xf I FIBO.7 ) k=012.)

is increasing with r, and positive, so that lim,8(r) = .. 6 exists and is non-
negative, If 8 = 0, then the #-module property of F yields 8, = 0. Thus the set

I=1{keZ, :6 # 0
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is @ or is an initial segment of Z,. We define
order(F) = sup L.

Thus, order(F} may be — oo, +00, or a non-negative integer. It 15 —oo when Z is
empty.

For instance, the reader may check that the order of C* is k, the order of Lipa
is0{for0 < a < 1), the order of L is —oo for p < 400 and O for p = +o0.
For further examples, see section 3 below.

In the definition of order, it makes no difference if we replace 0 by some other
point of R, Nor does it matter if we replace the monomial xi by any other
homogeneous polynomial of degree k. These facts follow from the invariance of F
under composition with elements of Aff.

If F&% G, then order(F) > order{G). Thus the order depends only on the local
equivalence class.

We can now state the theorem,

Theorem. Let F be an-SCBS and suppose order(F) = k = 0. Suppose also that 9
is dense in F. Then FISC*. Conversely, if F5C* then order(F) > k.

The order of F depends only on clos, 7, so the restriction that 2 be dense in
F is essential in the first part. For instance, L* has order 0.

ProOOF. The converse is trivial, since F3G implies order(F) > order(G).

To prove the main assertion, suppose F has order at least k. We will show that
F&CX

It suffices to consider the case when the order of F is exactly k. For otherwise
we may pass to the (Banach!) space F + BC".

For a € R, the relation ~, defined by

f ’L g e ” f— g”F(B(u.rl] 10 as rlo

is an equivalence relation on F. For ¢ € &, the equivalence class of ¢ contains
exactly one polynomial of degree < k, namely T%¢, the kth order Taylor
polynomial of ¢ about q.

The function

p - inf ||p||

=

F{Blur)}

18 a norm on C[x], (= the space of polynomials of degree at most k on RY), and
hence is equivalent to any other norm on Clx]..
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Property (4) implies that bounded families of translations act equicontinuously
on F, and hence the different norms corresponding to a bounded set of points a
are uniformly equivalent.

For fe F,if ¢, €% and ||¢ — f|I, — O, then {T%¢}* is a Cauchy sequence

in C[x],, and thus we may define a polynomial T* f by

T'f=1mT'¢ .
nt o

This pelynomial is independent of the choice of {¢, } converging to fin F norm.
Moreover, the T:¢, converge to T* f uniformly in a, provided a is restricted to any
compact set. Thus, since the T'¢, are continuous in q, it follows that the T* f are
continuous (i.e. continuously-varying polynomials in x) in a.

Define g &€ C° by gla) = (T¢ f {a). When ¢, — fin F, it follows that ¢, — fin
Z ', Since

$la)=T ¢ a)> T, f(a)=gla)

uniformly on compacta, it follows that ¢ —¢ in Z'. Thus g represents the
distribution f.

To see that T*f is actually the Taylor polynomial of ¢ at @ we argue
inductively. It suthices to give the argument for the identity

dg d .
EXI = a—xl T”f at o
If Bis a ball about a, then
¢ — g
29,
o, "

uniformly on B, where h(b) = 3 (T:)b ). An elementary argument then yields that
1

dg
dx,

inside B, which yields the desired result on evaluation at a.
That's it. W
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3. Examples

We illustrate the theorem by working a few examples. The only novelty here is
the point of view: all the results arc known (see, for instance, Trigbel 1983).

Example 1. YMO.
Consider the Sarason space VMO, of functions of vanishing mean oscillation.
A function fe L, (R} belongs to VMO provided that

loc

sup MO(f, @) — 0,

¢ a cube
0<iQl =1

as t |0, where

MO, Q) = inf— | f(x)— cldx
it l,

denotes the mean oscillation of f on Q. A norm on VMO is

S| 1f@Ndx+ sup MO(S, Q)

~Brort o<lgl=1

With this norm, VMO is an SCBS, and # is dense in VMO.

Now VMO has order — o0, ie. it does not inject locally into C'. The natural
way to see this is to write down some function f with fe VMO ~ C". But in the
spirit of the present discussion, we show it by proving that 8(r)—0 as r|0, ie.
there exist functions ¢ € VMO such that ¢ = 1 near 0, yet the VMO-norm || ¢ ||
is near 0.

Take b > 0, small, and let ¢ € L' be defined by

$x} = max {0, min{l, | +b —|x|"}}

for x € R". Then ¢ = 1 near 0 and the VMO norm of ¢ is bounded by a constant
times b.

Example 2. Sobolev spaces.

ForO<keZ and | < p< + o0, the Sobolev space W*" consists of those f= L”
such that all {distributional) partial derivatives &'f of order {i{ < k are representabie
by integration against L" functions. With the norm

f= 0 e+ 11D e

the space W** becomes an SCBS. The subspace 7 is dense, provided p < + 0.
Sobolev’s theorem says that W*" has order greater than r if kp > rp + d, and has
order less than r if kp < rp + d. The cases when kp = rp + d vary. We consider a
few cases.
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Case 1. kp < d.
There is a constant x > 0, depending on d and k, such that for each r > 0, there
is a function ¢ € & such that ¢, =1 on B, r), ¢, = 0 off B(0, 2r), and

|x|"- | D'x) < x
whenever 0 < j < k. Thus a calculation shows
Or)< | d M, S w0757

(with 2 new x = «(d, k, p)}). Thus the order of W** is — 0.

Case 2. p>d,and p < + 0.

We will show that the order of W'’ is 0.

First, consideration of the functions x,- ¢, where ¢, is chosen as in the first
case, yields

o)< |l x, @, 1l S 6017,

with x independent of r. Thus the order is less than 1.
The other direction is more trouble. This is typical. We have to show that if a
function ¢ € & is identically 1 near 0, then it cannot have very small norm.
Suppose that ¢ is such a function. Suppose that {| ¢[/.s< {. Then there is a set
E < (B(0, 2) ~ B{(0, 1)) having volume at least 1, on which |@| < 1. For each a € E,
the line integral of {D ¢| on the ray [0, a] from 0 to a exceeds 3. Thus

3
—sH D ¢|ds dx.
4 E J[0.x]

LY

|d—l

JBio.2) |y

i
% K ”-D¢'”|_‘ “_V = MT”L"&B(U,E)L

where p’ is the conjugate index to p. The condition p > d guarantees that

i

"W“L’mlu.z): < + .

Thus, if || ¢[,- is very small, then | D¢| is not, so in either case || ¢|,., is not
very small. Thus 8, > 0, as claimed.

As a final case, we consider one of the borderline cases.

Case 3. W*.

As before, it is easy to show that the order is less than 1.

To see that it is exactly 0, suppose ¢ € Z is 1 at 0. Then
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K (& fxy...x,)

b= Tll.  0x,.0x,

dx,...dx,.

Jo
From this it is evident that | @|l,... cannot be very small.

Example 3. Campanato spaces.

Consider the scale of generalised mean oscillation spaces on R’. These were
introduced by Campanato and by Meyers, following preliminary work of Morrey.

Fix s € [0, o] (smoothness level), p &1, <o) (integrability level), and ¢4 € [1, @)
(fine tuning level). The space BMO(s, p, ) may be defined as follows.’

Fix k to be the least integer greater than or equal to s.

For fe L' and a closed cube Q = R’, we denote by T, f the unique polynomial
pe Clx,....x,], such that

{(f — p)xdx =0,

¢
whenever i is a multi-index of order |i| <k We define the kth order mean
oscillation of f on @ as

LT

MO(f, k, Q) =
(f ko Q) o1,

If (x)— T, f (x)ldx.

For t > 0 and x € R, we set

2(fxt)= sup MO(f, k, Q),

[gl="¢
(EQ

and then we set

(1) = x=>Q(f x, ).

Finally, we say that f BMO(s, p, g) if the function t — @ (f, £ )/t" belongs to
the space L“(dt/t). A norm on this space is

Ly ((I)( - t))., ﬁ)ll’
r t]

With this norm, it is an SCBS, as may be seen.

Roughly speaking, the space BMO(s, p, 4) is very close to the Sobolev space
W™ when s is integral, and for non-integral s interpolates between the integral
values. The order of BMO(s, p, ¢) is —co when sp <d, is 0 when d <sp <d + p,
is 1 when d + p <sp<d+ 2p, and so on {regardless of the value of g). The cases
when one of these inequalities is replaced by equality are more delicate.

Consider the case sp < d. Estimation shows that the coefficient of x in the
polynomial T, f is bounded by « {d, k) times

f'_’ Hf”ﬂmm.ln+(
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{side )",

|f () dy,

and thus

|T,fldx < x| [fldx.
¢ ¢

Using this, we obtain that

MOfk 0)< K inf —— | | £00)— ple)ldx .

pECIx]g [Ql .

¢

Given this observation, it is not too hard to use the same functions ¢ of
Example | to show that 8(r) |0 for BMO(s, p, g ). In fact, one obtains the lollowing:
{1) for x belonging to the support of ¢ and for small positive ¢,

ti\+l
Q(p, x. 1) < x-(;) ;

{2) for dist{x, sptgp} > t,
Q{g, x,t) =10

(3) for large ¢,
r od
(¢, x, 1)< K(}-)

Thus

@ (@, )<k (r+ )" min{(t/ry™", (r/t)'},
and a calculation shows that the norm of ¢ is essentially r*7™,

It seems to be a good deal harder to prove that the order is at least 0 when
sp>d. 1 did not manage to find a proof that was shorter than the route via
Campanato’s identification of the space BMO{s, p, g) with the corresponding Besov
space, and a classical proof of the embedding for the Besov space. To demonstrate
a fairly general positive imbedding theorem, we close with the following example.

Example 4. The classical Besov spaces.

Let 5, p and g be as in Example 3. Let k denote the least integer greater
than s.

For fe L' and t > 0, consider the kth order L"modulus of continuity
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wlt) = sup |x =A% F ()~
=
peRd

Here, A* denotes the kth power of the difference operator
A, g()—gt +h).
We say that f belongs to the Besov space BES(s, p, g} (or B, } if the function

20

¢

belongs to L¥dt/t). A norm on BES(s, p, g) is

fHHfH'-F[IFI(U_”, +l ’[E{it_)jlq g} ,‘.

t' ¢

With this norm, BES(s, p, g) becomes an SCBS. The subspace 7 is dense except
when p or g is + 0.

Except for some of the cases when s is integral, or p or g equal | or + o, the
Besov spaces BES(s, p, ) are in fact locally the same as the BMO(s, p, ¢), although
this is far from obvious.

In particular, order(BES(s, p, 4)) 2 0 whenever sp > d. We will not prove this
here, but will prove the weaker statement that the order of BES(s,p, o) is = 0
whenever

d i
s> —-—+1—-——.
P

d 1
Suppose s >;+ 1 —E, and ¢ € 9 is identically 1 near 0. We have to show

that its BES(s, p, oo )-norm is bounded away from zero.

We may suppose that ¢ has small norm in L'(B(0, 1)), say norm at most one
quarter the norm of the constant . Then for each small ¢ > 0, there exists a
square S of side 2f, contained in B(O, 1), with

ip t,,'jp
"d < —,
(.5‘ 4| x) -

We can then construct a chain of touching congruent squares, S, S,....5,, each of
side t, with S, centred at 0, S, lying inside S, and S, = S,+h, where |h| = ¢
Note that m < 1/&.

Provided t is small enough, we will have ¢ = 1 on §, so we obtain the
estimate
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| @{x)"dx

3_.w|
4t <

. { ;S_ | <1‘f5(x)l"eix}”F

-5

< { Jl $x)~ Gl + mh )rdx}w

| $(x) — bl +h)|"dx] P

m—1
<y {
<" Al e,

where p’ is the conjugate index to p.
In rather similar fashion, we can obtain the higher-order estimate

Kt AL e
corresponding to the integer k. (For odd k we represent ¢(x)— ¢(x +mh) as a sum
of kth order differences, with a small error. For even k, we use an alternating sum
of kth order differences, instead.) Thus, for all small ¢ > 0, we obtain

(g, t)= e,

whence the BES(s, p, c¢ }-norm of ¢ exceeds «.
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