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1. Introduction
In [7] we announced the following result:

Let 0 < keZ and let  be a C* diffeomorphism of C into C, reversing orientation. Then
C[z, f] is dense in C¥C,C).

As a corollary, C[z, ] is dense in C°(C,C), ie. C[z, f] is dense in C(X) for each
compact X in C. This verifics an old conjecture of A. Browder. We noted in [7] that
the corollary also holds for direction-reversing homeomorphisms f, provided f is
locally C*! and nonsingular off a reasonably small closed set E < C. The purpose of
this- paper is to present and prove a more general result of this kind, covering
functions f:C—C that are merely finite-to-one (instead of one-to-one) off the
exceptional set, and almost unrestricted on the exceptional set. Specifically, we
consider proper functions that are r-fold smooth covering maps off a closed
exceptional set E which has no interior and for which C~ E has no bounded
components. By a proper function, we mean a continuous function for which the
pre-image of each compact set is compact.
Here is our result.

Theorem. Suppose f:C — C proper. Suppose E  C is closed, intE = &, and C~E
has no bounded component. Suppose 0<reZ, and for each acC~E we have
f (@) C~E and #f~*f(a)=r. Suppose that on C~E, fis C', nonsingular,
and locally direction-reversing. Then C[z, ] is dense in C°(C,C).

Observe that the hypotheses imply that f(E) is disjoint from f(C ~ E), and that
the exceptional set E embraces all the following: (a) the points aeC such that the level
set f ~!f(a}isinfinite, or is finite but has anything other than r points, (b) the points a
at which f is not differentiable, and (c) the points a at which f is differentiable and
critical. :

The possibility of such a result is suggested by the observation that if p(z)eC[z],
then C[z, p(2)] is dense in C%C,C) (-—a quick direct proof of this latter fact is

nonconstank
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obtained by noting that C[z,p(z)] is a module over the sell-adjoint algebra
C[p(z), p(2)], and hence each extreme norm 1 annihilating measure for C[z, p(2)] is
supported on some level set of p(z). This method uses an idea familiar from the work
of Bishop, and one previously used by de Branges in his celebrated proof of the
Stone-Weierstrass theorem).

A less trivial consequence of the theorem is that if ¢ and y are C'
diffeomorphisms of C onto C, having opposite degrees, and if p(z)eC[z], then
CL¢,p(¥)] is dense in C%(C, C). To deduce this, first make a change of variables to
reduce to the case ¢(z) = z, and then apply the theorem with E equal to the (finite) set
¥~ Hp~'p(p’)” 1(0)) (= the preimage of the image of the set of zeros of p’).

We remark that the main difficulty in proving theorems like this is to establish
the polynomial convexity of the sets

Xp={(f@)lzi S R).

In fact, if we were willing to assume that cach Xy, is polynomially-convex, then we
could drop most of the assumptions in the statement of the theorem. See [10].

The hypotheses that f be C', nonsingular and locally direction-reversing on
C ~ E may be re-expressed: f is C' and | f,|>|f.,| on C~E.

The theorem from [7], quoted above, follows from the case r =1 of the present
theorem. To see this, note first that it is sufficient to prove that C[z, /] is dense in
C*(B) for each closed ball B. Fixing B, we may modify f off aneighbourhood of B to
obtain a diffeomorphism f, of C onto C. Then the hypotheses of the Theorem are
satisfied, with f = f,, E= @ and r = 1. Thus C[z, ] is dense in C%(B), hence the
graph of f|Bis polynomially-convex. Now apply the functional calculus for Banach
algebras and the Range-Siu theorem.

2. Proof of Theorem

For aeC ~ E, we denote the solutions of f(z)= f(a) by a,,....q,. with the
convention a, = a. Similarly, f ~!f(b) = {b,,..., b,}, and so on. By hypothesis, the a,
{1 £j <) are distinct and lie in C~ E. Let

Ada)= l;[ Sia;), Bia)= I—[ a;—a;)

¥i

Leta = (a,,...,a,), where &, is a value of log (4;B,), and let § be any complex number.
Consider the polynomial in z:

plz)=pla,o,fB,2)= ZP: l;[(z-a ) ,~+ﬁt_lj1(z—a!).

a;—a;

Evidently, expp(a;) = A;B; (1 £i=r).

Suppose I’ « C ~ Eisan arc, withendpoints b and c. We wish to choose a,{a) and
Bla), for acT, so that p(z) becomes p(a, z), a continuous function of @ on I', with
values in C[z].

Observe first that we may choose 4a,,...,a, to depend continuouslty on a, for
acl". Indeed, by an application of the inverse function theorem, f ~1f(I") is a
covering space of I, and hence consists of 7 pairwise-disjoint arcs, so that a,,..., q,
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are uniquely-determined (as continuous functions}) by their initial vaiues b,, ..., b, at

the initial point of I'. The functions A; and B; now become continuous functions of a

on I', and they are bounded, and bounded away from zero, on I". There is a unique

continuous choice of a,(a), once ;(b) is specified. The function ar— f(a)e C(I")may be

chosen at will. With these choices made, p(g, z) is continuous in @ on I', as required.
Fix R > 0. We will show that C[z, f] is dense in C(D), where

D =B(R)= {zeC:|z| < R}.

This will suffice.

Let 4 denote the uniform algebra closg,, Clz, /1.

Abbreviate X = X = {(z, f(2))eC*:zeD}.

Let P(X) denote the uniform algebra closgy,Clz, w).

Clearly the continuous algebra homomeorphism sending z—z and wi— f(2) is an
isomorphism from P(X) onto A.

Fix beD ~ E.

Let R, =2-max {2"R,supp|f]}.

Choose ceC ~ E such that ¢ belongs to the same component of C ~ E as b and
such that

el >Ry (1=js7),

| fe)] > 2R,

This is possible, because f is continuous and proper, so that the sets f ~*fB(R,)and
fTYB(2R,) are compact, and because no component of C ~ E is bounded. Next,
take an arc I from b to ¢ in C ~ E. Choose initial values b;(b), (b} Then a; and o, are
determined on I'. Finally, pick feC(I") so that Rp(c,z} = 0 for |z{ £ R (Here, R
denotes the real part). This is a restriction only on the value f(c). It can be met

because H z —¢;) stays in an acute-angular sector, for |[z| £ R
Define g(a, z) = exp p(a, z). Then for ac I, gia, z} is an entire function of z, and we
have

gla,z) = A;Bi(1 + 1i(z))
where 1,(z) = 1,(a, z) —~ 0 as z —a;. This convergence is uniform in ael, in the sense
that, given £ > 0, there exists &, > 0 such that
acl’
|z —ai< 6,
This is so, because all the functions f,(a,)*,(a,—a) =  fori+j AF', Bf! o, and §

are bounded for qaerl".
Define

}=>|ri(a,z)| < 8.

b0 = (@D @) — F@} ] {%}

j=1

¥(a,2)=gla,2){f(2) — Ij {f(a )}
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We may write

f@)— fl@) = fAa)(z — a} + [(a)(Z — @) + mila, 2)| 2~ ay
where 1, —0 as z— a;. Again, the convergence is uniform in ael’, because of the
continuity of the derivative Df on C~ E,
The hypothesis that f is locally direction-reversing now yields

(z—a)(f(@) = f(@) = fa)lz ~ a*{1 + &la, 2)}

where limsup |¢;| € x < 1. Here x may be chosen independently of ael”, and the

convergence is uniform in ael. In addition to the above-mentioned facts and
estimates, this depends on the fact that the ratio | f,(a;)/ fa;)| is bounded below 1,
uniformly on I

Next, we may write

l—[ (z—- aj) = H (a;— aj){l + '}’i(aaz}}

i IR
where 7, -0 as z —q;, uniformly in ael”. Thus
(f)(ﬂ, Z) = |Z - ailz{l + Ci(as Z)}
where lim sup | {;} < 1, uniformly in ae I". Consequently, there exists & > 0 such that

acl’, |z—a;| <é=>RP(a,z)=0.

But, on the set {zeC:|z—- ;|2 d,Vi}, the function ¢(a,z) never vanishes. By
compactness, ¢(a, z) is bounded away from 0 on the set

I'x(Dn{zeC:ilz—q| 2 d,Yi}).
Thus, for asI” and zeD, ¢(a, z} omits the half-disc
{zeC:Rz <0,z < 4},
for some 1, > 0. In particular,

Pla,z2)+A+£0 (ael,zeD 0 <l < i)

Define
x(a, 4, z,w) = gla, z(w — f(a)) l_[1 (z—a)+4 l—ll fiag),
i= i=
Rr+1
Ay =infd ——:qel 1 £iZr .
: {lf,(a,-)l' }
Then 4, > 0.

Let |z} R, |w|€R,,0< i< A,. Then
iglc,2)| =expRple,z) 2 1,

+1
>R,

gle, )W — f(CJ)jljl z—c)

¥(e, 4,2, w) 0.



and K J. Preskenis

a;|

because of the

faerl’, and the

oned facts and
unded below 1,

8 >0 such that

r vanishes. By

Uniform approximation by polynomials in two functions 533

Thus »(a, 4, z, w) is an entire function of (z,w), and for 0 < A <4, = min {4, 4,}, we
have

(1) x{a Azywy = 0if (z, weX and ael.

(@) zlc, 4, z,w)£01if (z, w)e X, the polynomially-convex hull of X.

Statement (2) holds, because the hull of X is certainly contained in the polydisc
B(R) x B(R}).

A classical argument of Oka now shows that (z, w)—>x(b, 4,2z, w)~ ! belongs to
P(X ), whence zi— d(b, z) + A€ A "%, for 0 < A < ;. For the reader’s convenience, we
give Oka’s simple argument:

The point is that we have a function h(a, z,w) which is continuous on I" x C?,
which for each aeI is entire in (z, w) and nonvanishing on X, and which fera=c¢
belongs to P(X)~*. Since the set of invertible elements in a Banach algebra is open,
the set X of ae I for which h{a, z, w)e P(X) ! is relatively open. Also, X' is nonempty.
If Z # I" were possible, then without loss in generality we may assume &' =T ~ {b}
Then h(b, z, w} has a zero at some (zo, wo)eX ~ X. By contmulty, |h(a, g, Wo) ™"
takes on arbitrarily large values for a near b on I, but by the maximum prmc:lple
|h(a, 2o, wo) ™~ *|is bounded by sup |h(a,z,w} ¥|, which is bounded independently of

(z,w)eX
a. Thus we have a contradiction, whence X =1T".
So far, we have proved the following. Given beD ~ E, there exists a function

2 ¢(b,z)eA and a 4, > 0 such that
0<A<A,=¢bz)+ied™ L

Now we will use this fact to conclude that 4 = C(D). This part of the argument
incorporates a device pioneered by Wermer [10].

Suppose 4 is a complex Radon measure on D, annihilating 4. We wish to show
that u =0, because (by the Riesz representation theorem and the Hahn-Banach
theorem) this makes 4 = C(D). Consider the Cauchy transform, f, defined by

_1 . dud)
=157
whenever zeC is such that the Newtonian potential

d|¢l©)
f lz—{]

is finite. The Newtonian potential is finite a.e. with respect to area, and the function £
is locally integrable. Considered as a distribution, it safisfies

fi(z)=

o
A
In particular, the support of g is a subset of the support of f.
For beC ~ D, fi(b) = 0, because p annihilates C[z].
For beD ~ E, consider

XH(b:z)=ﬂz%, n=1,2,3,....

(b, z) + .
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For n> 13!, we have y,(b,z)eA. Also,

Ji(b)
z—b

as ntoo, for z+b,,b,,...,b,. Since Re(bh,z) 2 0 for z near b, we get

d(b,2) | 1SB) _ IS0l

Xa(b, 2)—

| xalb, 2} = =
1 -b —b
plbzy+1| P00
n
for z near b,z + b. Hence there exists c(b) > 0 such that
c(b)
[
1.2 S

for zeD. Given this much, the dominated convergence theorem tells us that

EYAE) = lim 10, Ndntz) =0

whenever ji(b) < co and |u|[f ' f(b)] =0. Thus A(b) =0 a.e. on D ~ E, with respect
to area measure. Thus u is supported on EnD. .

Now EnD is a compact set with no interior and connected complement, so
Lavrentiefl’s theorem tells us that C[z] is dense in C(En D). Since p annihilates
C[z], we conclude that u=0.

. The proof is complete.

3. Concluding remarks
Apart from the examples mentioned, the theorem covers such algebras as
Clz, x™ —ny™],

where m is any odd natural number. Each of these algebras is dense in C%(C,C).
Exampiles like

Clz,xz],
Clz, (x* — y*)xyz],

are not literally covered, because the functions f involved are not proper. However
their density in C%(C, C) does follow from the theorem, because on each compact set
the functions coincide with proper functions that satisfy the hypotheses. (Alterna-
tively, the argument of the theorem may be applied directly to them.)

Another class of examples is obtained by starting with a direction-reversing
linear homeomorphism g{(z) = az + bZ(|b| > |a|), and function ¢: [0, c0)— [0, 0)
such that t¢(t)? is increasing, and forming f = g*¢(lg|**). A significant feature of the
theorem is that the behaviour of f on the exceptional set E is quite unrestricted,
apart from the requirement that f be proper. Thus E may include not only critical
points of f, but points at which f is not differentiable at all, and E may contain
infinite level sets of f. In [7] we stated that the following holds:
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Let f be a direction-reversing homeomorphism of C into C, which is locally C! and
noncritical off a closed set E, having area zero and not separating the plane. Then
C[z, f] is dense in C%C,C).

In fact, the case r = 1 of the theorem yields a considerably stronger result. The
area of E does not matter, as long as it has no interior. It may scparate the plane, as
long as its complement has no bounded components. The function f need only be
injective off E.

As a simple example, take E to be the segment [—1,1], and the function
[ =¢Z. dist (z, E).

An open question along these lines, proposed by de Paepe, is whether
Clp(¢), q(¥)] is dense in C°(C,C) whenever ¢ and  are homeomorphisms of
opposite degrees, p(z) and g(z) belong to C[z], and z(p(¢(2)), q(¥(z))) is injective.
For instance: C[z%,7%>+7%]. A much broader (and probably unanswerable)
question, is to classify the polynomially-convex hulls of all those X = C" that are
homeomorphic to the closed disc. Even for the case when X is a real-anaiytic disc,
our understanding of this is unsatisfactory. There are some substantial partial
results on the ‘local’ polynomial hull of discs (see, for instance, [1,2,4,5,9]). The
theorems of [6,7] and the present paper are among the few genuinely globat results
for discs.
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