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ABSTRACT. Existence results for a variety of initial- and boundary-value prob-
lems are presented. For the problems considered, we show that the existence
question depends on properties of the zero set of the nonlinearity. The analysis
throughout is based upon a nonlinear alternative of A. Granas and the use of a
prion bounds.

1. INTRODUCTION

This paper shows how existence results for various initial- and boundary-
value problems may be deduced from the location of the zeros of the non-
linearity. The paper is divided into two main sections. In the first section,
second-order problems of the form

{ w(y' = flt,y,¥), O0<i<l,
y(0)y=y{1} =0,

are examined where w: [0, 1] — [0, 00) and f: [0, 1] x R’ — R are con-
tinuous with w > 0 on (0, 1). By a solution to (1.1) we mean a function
yvel l[0, 1ncC 2([), 1) which satisfies the differential equation and boundary
conditions. Boundary-value problems of the form (1.1) have been extensively
examined: see for example [1, 4, 5, and 6]. In all of these papers f satisfies
a growth condition in y’ (usually at most quadratic) for (¢, y) in bounded
sets. However, if we examine the following two problems, which have virtually
identical growth rates as {J'| T oo,

(1.1)

(12) {z”zy":2(1+l){1w(y')2}, 0<t<1,
' 0y =y(1)=0,

(13) {r‘”y”zz(z+1){1+(y’}l}, 0<t1<1,
' y(0)=y(1) =0,
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662 A. G. O'FARRELL AND DONAL O’'REGAN

then it may be shown (see §2 below) that (1.2) has a solution, but (1.3) does
not. What is really essential here is not the growth condition in »’ but rather
the location of the zeros of the polynomials 1 - p2 and | + p®. This will be
explained in §2. The results of this paper improve, complement, and extend
existing theory found in [5], which examined problems of the form (1.1) with
w =1 and f(t,y,y) = f(»'). We remark as well that the results in §2
have obvious extensions to higher-order boundary-value problems: we choose,
however, to omit the details.

In the second main section, §3, we examine the existence of solutions and
their domains of definition for first-order initial-value problems of the form

{ wiy' = f(t,y), te(0,1],

y(0)=0,
where w: [0, 1] — [0, co) and f: [0, t] x R — R are continuous with > 0
on (0, 7]. Here, by a solution to (1.4), we mean a function y € C[0, t]1n
C 1(0, 7] which satisfies the differential equation and the initial condition. In
[2] and [7], when the nonlinearity f satisfied a certain growth condition in y,
global existence of a solution to (1.4) on {0, 7] was obtained, and in addition,
for a certain class of functions f, T was shown to be maximal. However, also
in this case, if we examine two problems with virtually identical growth rate in
y

(1.4)

1.5
(1-5) (0,

{ tlﬂy' =1 +y3, te(0, 1],
¥(0},

it can be shown (see §3 below) that (1.5) has a solution forall 7 > 0 (i.e., global
existence in the future), whereas (1.6) has a solation if 7 < 7 /27 but not if
t> 7 /27. Again, what is really essential here is the location of the zeros of
1 - y3 and 1+ . The results of this paper, together with [2] and [7], provide
an easy way to recognize, just by looking at the differential equation, when (1.4)
has a solution either on [0, c0) or on [0, 7] for 7 < oc. In addition, in the
latter case we obtain the maximal t for a certain class of problems. It should
be remarked here as well that all the results in §3 have corresponding theorems
for problems of the form

{ w(ty = flt,y). tel-1,0),
y{0) =0.

The existence results of this paper are based on a nonlinear alternative [3], de-
scribed below, of A. Granas, which reduces the problem of showing the existence
of a solution to (1.1) to the problem of finding a priori bounds, independent of
4, for y and its first derivative y', when y is a solution to

{ w)y =Afle, v ), O0<t<l,
y(0)=p(1) =0,

{tlﬂy'=1—y3, te (0, 1],

(1.6)

{(1.7n
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with 0 < 1 < 1. Similarly, the existence of a solution to (1.4) reduces to
obtaining a priori bounds, independent of 4, for solutions y to

1.8) {w(t)y’ﬂf(t,y}, 0<r<e,
' ¥(0) =0,

with 0 <A <1,

Theorem 1.1 {nonlinear alternative), Assume that U isa relatively open subset
of a convex set K ina Banach space E. Let N: U — K be a compact map,
and assume that 0 € U . Then either

(i) N has a fixed point in U, or

(ii) there is a point uc dU and a number 1€ (0, 1) such that u=ANu.

Here, by a compact map is meant a continuous function whose image has
compact closure. We have immediately

Theorem 1.2, Assume that 0 <A< 1, that [0, 1]><R2 —Roand y:[0, 1] —
[0, o0) are continuous with w >0 on (0, 1) and 1/y integrable on |0, 1].
Suppose there is a constant M , independent of 1., such that
f
wl, € max{|yly. b'ly} < M,
(where |y, = SUP 1 w(t)) for each solution y to (1.7), for each A< (0, 1).
Then (1.1) has at least one solution in c'o, 11n CZ{O, 1).

Proof. Solving {1.7) is equivalent to finding a y € B (where B denotes the set
of continuous functions on [0, 1] satisfying the Dirichlet boundary conditions)

which satisfies
w5, y8), Y8
y-y{0)= l[ﬂ wis) ds.

Let
C,f0, 13 = {u € C[0, 1]: u(0) = 0},
Ch0, 1]={ueC'[0, 1):ue B},
Define operators L: C;[O, 11— C, and N, C;[O, 11 = C, by setting

(Ly)(H) = V' (1) = ¥'(0)
S vs), Y s
(Npp)t) = i wis) d

L is bijective and, by the Bounded Inverse Theorem, L™ is a bounded linear
operator. Thus (1.7) is equivalent to the fixed-point problem

S.

det’

y = AL—'Nf-_v = ANy.

The operator N maps C,';[O, 1] into itself. Now, N, is clearly continuous,
and it is also completely continuous, by the Arzela-Ascoli Theorem. Thus N
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has the same properties. Set

U={ueCyl0, 1]: |uj < M+ 1},
K =C,y0, 1],
E=C'l0,1].

Then Theorem 1.1 applies, but by the choice of U possibility (ii) is ruled out,
and we deduce that N has a fixed point, i.e,, (1.1) has a solution. 0O

Similarly, we have:

Theorem 1.3. Assume that 0 < A < 1 and that f:[0,7] xR — R, and
w: {0, t] — [0, c0) are continuous with y >0 on (0, 1] and 1/y integrable
on [0, 1]. Suppose that there is a constant M , independent of A, such that
sup |y(¢)l < M
[0, 1]
for each solution v to (1.8), for each A € (0, 1). Then (1.4) has at least one
solution in C[0, 1IN C'(0, 1].

2. BOUNDARY-VALUE PROBLEMS

Our main goal in this section is to obtain existence results for problems
of the form (1.1), and we begin by treating the case of separable variables,
flt,y,y) = #(1)g(y"); subsequently we will use a comparison to treat the
more general case. Consider first the problem

{ wy" =d(ngly), O<t<l,
»(0) =y(1)=0.

If g{0) =0, then {2.1) has the solution y = 0. Thus for the remainder of this
section we assume that g(0) # 0. Then either g{0) > 0 or g{0) < 0, and

since the analysis and results are similar in both cases, we will assume without
loss in generality that g(0) > 0.

(2.1)

Theorem 2.1. Assume that ¢, w: [0, 1] — [0, o0) and g: R — R are contin-
uous, that ¢, w > 0 on (0, 1), and that ¢y is integrable on [0, 1]. Also,
suppose that g{0) > O and that g has two zeros of opposite sign. Let r, <0 <r,
be, respectively, the greatest negative and smallest positive root of g, and suppose

that
| Bi8) 4o (7 du
/0 w(s}dssfo gluy’
L p0s) " du_
[ e s / 7w

Then (2.1) has at least one solution.
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Proof. To prove the existence of a solution, we will apply Theorem 1.2, so
it remains to show that there is a constant M , independent of 4, such that
|y, < M for each solution y to

{ wit)y” = Ap(1)gly), O<t<l,
y(0)y=y{1)=0

with 0 < i < 1. First, there exists a least 7, € (0, 1) with y'(z,) = 0, and so,
since g(0) > 0, we have y" > 0 in a neighborhood of 7.

Suppose that y” attains the value 0 on [7,, 1), and let & be the first point
in this interval with y"(8) = 0. Then y'(d) =

Thus 3" >0 and » >0 on (r,, d). Consequently, on {7,, d) we have

(2.2)

A P
gy v’
and integration from 1, to & yelds
[’I du _ ¢r(t qbt
o &lu) '!/(f f

a comradiction

Thus y" >0 on [t,, 1), and hence 0<y <r on [r;,1).

Analogous reasoning shows that r, < ¥ <0 on (0,1,]. Hence r, <y "1y <
r, for t € [0, 1], and s0 r, < ¥(1) < 1| for t € [0, 1] The constant M =

2max{r,, —r,} thus has the desired property, and the existence of a solution
to (2.1) follows. O

Theorem 2.2. Assume that ¢, w: [0, 11— [0, 00) and g: R — R are continu-
ous, that ¢, w >0 on (0, 1) and that ¢/y Iis integrable on [0, 1].

(1) Suppose that g(0) > 0, and that g has a posilive zero but no negative
zero. Let r; >0 be the smallest positive root of g, and suppose that

L ols) " du
/0 v s /0 2’
"9y [0 du
fo o < /_w 2
Then (2.1) has at least one solution.

(i1) Suppose that g(0) > 0, and that g has a negative zero but no positive
zero. Let r, <0 be the greatest negative root of g, and suppose that

[¢>5)d f du

)
Lot ;}’Z).

Then (2.1) has at least one solution.
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Proof. (i} Let ¥ be a solution to (2.2). Just as in Theorem 2.1, there exists
aleast 1, € (0, 1) with y'(r;) =0 and 0 < y'(t) < r, for €z, 1]. In
addition, ¥ > 0 and so »’ < 0 on some interval to the left of 7,. If y"
attains the value 0 at a point ¢ to the left of z,, then gb(e)g(y’(é)) =0,
a contradiction since g has no negative zeros. Thus y” > 0 on (0, 7,), so
¥'(0) <y'(1) <0 for t€[0, 1,]. Consequently

O du . [T e0s) ' () ¢ du
fqu 2 ’1/0 o)< /0 v < /_m 2’

so there exists a constant M , independent of 4, such that —M, < ¥'(0). Thus
~M, <y'(t) <r for t €[0, 1], and the existence of a solution to (2.1) now
follows from Theorem 1.2, as before. O

Theorem 2.3. Assume that ¢, w: [0, 11— (0, c0) and g: R — R are continu-
ous, that ¢, w >0 on (0, 1), and that ¢/w is integrable on [0, 1]. Suppose
that g(0) > 0 and that g has no real zeros.

(1) Suppose that

L é(s) ® dy
s<f0

o w(s) glu)’
' 8(s) ° du
riah | s

Then (2.1) has at least one solution.
(i1) Suppose that
Lo oo [ du

s> .
o w(s) —eo &(H)
Then (2.1) does not have a solution.

Proof. To prove (i), let y be a solution to (2.2). Now therc exists a least
t,€(0, 1) such that y'(r,) = 0 and, of course, »" >0 on (0, 1). Integrating
from t, to any > 7; yields

¥ t 1 o0
f d_u=,1fwds< ﬂs_)dK[ du_
o & ., W(S) o wis) o &lu)
and similarly, integration from any ¢ < 7, to 7, yields

0 1 0
/ du_ [ ) yo o [ Au
v (1) o w8 —co 8(#)
Thus there exists a constant M, , independent of 4, such that | y'(1)] < M, for

t € [0, 1], so existence of a solution to (2.1) follows from Theorem 1.2.
To prove (ii), if y satisfies (2.1), then integration from 0 to 1 yields

ols) o [ du [ du
/0 w(S)dS_L(m glu) </_oo glu)’

which is impossible. O
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We now turn our attention to the more general problem

{ wity” = fle,y, V), 0<t<l,
»(0)y=y(1)=0,

and we will see that the above results may be generalized quite easily by using
a comparison. Throughout the following analysis we will assume that

fr,y.pl <ot)lglp

where ¢ and g will be described below. Once again, if g(0) = 0 then (2.3}
has the solution v = 0. Also, like cases g(0) > 0 and g(0) < 0 yield similar
results to one another. Hence, without loss in generality we will assume that
g(0y> 0.

(2.3)

Theorem 2.4. Assume that
o f:[0,]xR* =R and y: [0, 1] — [0, o) are continuous with y >0
on (0, 1);
e there are continuous functions ¢: [0, 1]— [0, oo) and g: R — R with
2(0) > 0 such that ¢ >0 on (0, 1), ¢/ is integrable on {0, 1], and

fie,y, p)| < o()lglp); and
o f{t,y,0)>0 forall te(0,1) and y €R.

(1) Suppose that
e g has two zeros of opposite sign, and
e ifthereexist reR, 16(0,1), and y €R such that f{t,y.r)=
0, then g(r) =
Let ry < O < r, be respectively the greatest negalive and smallest
positive roots of g, and suppose that

f dls ) 4 "odu
5 0 gu)’

)
wisy 7
o Wi(s) r, 8(U)
Then (2.3} has at least one solution.
(11) Suppose that
e g has a positive zero but no negative zero, and
o ifthereexist r>0, t€(0, 1}, and y € R such that f(t.y.r}=

0. then g{ry=10.
Let r, >0 be the smallest positive root of g, and suppose that

P{s5) "odu
f G —/u )
B(s) O du
fo PR [ s

Then (2.3) has at least one solution.



668 A. G. O'FARRELL AND DONAL O'REGAN

(i11) Suppose that
& ¢ has a negative zero but no positive zero, and
e ifthere exist r <0, t€(0,1), and y € R such that f(1,y,r) =
0, then g(r)=0.
Let r, < Q be the greatest negative root of g, and suppose that

B o [0 d
/ mﬂdSS/;EET

L)  du
/0 w(S)dK[a glu)

Then (2.3} has at least one solution.
{iv) Suppose that
e g has no real zeros and

' éls) * du
Awm“<£ g

1 0
o(s) / du
——ds < Patany
./o w(s) —oo &(U)
Then (2.3) has at least one solution.

Proof. To prove (i}, let y be a solution to

{ wity' =aft,y,y), O0<it<l,
@)y =y(l)=0

with 0 < A < 1. There exists 7, € (0, 1) with »'(z,) =0, s0 »"(1,) > 0 and
consequently y” > 0 in a neighborhood of 7,. Let & be the least point (if
any such exists) after 7; at which y”(6) = 0. Then »" >0 and ' > 0 on
(1,.48), and y'{8) = r,; thus, integration from 7, to J yields

r ') i
/lﬂ—gj/ Mafr<f Ma’t,
o &{u) ., vt o w(t)
a contradiction. Thus y" > 0 on {r;, 1) s0 0 < Vi < r, for t € [r;, 1].
Analogous reasoning shows that r, < () <0 for ¢t € [0, 7,], and existence
of a solution to (2.3) now follows from Theorem 1.2.
The proofs of (i1) and (iii) are similar to the above and Theorem 2.2.
To prove {iv), let y be a solution to (2.4). Now there exists 7, € (0, 1) with
Y'(1,) =0 and so y” >0 on (0, 1}. Integration from 1, to any given ¢ > 1,

gives
YO du [ als) > du
A mm‘ﬁwm“<ﬁ o

and similarly, integration from any [ < 7, to 7, yields

Codu [Tels) o [0 du
mem<ﬁwm“<[mﬂm‘

(2.4)
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Existence of a solution now follows from Theorem 1.2. O

Remark. Many boundary conditions other than Dirichlet boundary conditions
could be considered; however, since the analysis is similar in all cases we choose
to omit the details. For example, if we were to consider
{ w)y' = flt.y.y), 0<r<l,
y'(0)=y(1)=0,
then essentially the same reasoning yields the following parallel version of
Theorem 2.4.

(2.3)

Theorem 2.4*. Assume that

o f:]0, 1]><R2 — R and w: [0, 1]— [0, oo) are continuous with y >
on (0, 1);

e there are continuous functions ¢: [0, 1] — [0, «) and g:R—R with
g(0) > 0 such that ¢ >0 on (0,1} oy is integrable on [0, 1], and

If(t.y. )| < o()g(p)l:

e f(0,y,0)>0 forall yeR; and

o if r > 0 is such that there exist t € (0,1) and y € R such that
fit,y,r)=0, then g(r)=0.

(i) Suppose that g has a positive zero. Let r, > 0 be the smallest positive
root of g, and suppose that

o) o [0 Y
/0 W{S)dssjo 2

Then (2.5) has at least one solution.
(ii) Suppose that g has no positive zeros and that

1
H(s) /°° du
——=ds < e
fo I R 0
Then (2.5) has at least one solution. 1]

Example. The problem

{ A =2+ D{L =), O<i<],
y(O)=y(1} =0
has a solution, whereas
M =2+ DL+ Y, O0<ie<,
{y(o) =p(1)=0
does not. To see that {2.6) has a solution, take w(f} = ey =20+ 1),

and g(u)=1- u° . Note that g has two zeros of opposite signs, r, = | and
ry = =1, and that g(0) > 0. In addition,

f’* du U du C
o &lu) o T—ut

(2.6)

(2.7)
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[ 5
. glw)
Consequently all the conditions of Theorem 2.1 are satisfied, and hence (2.6)
has a solution.
Now, to see that {2.7) has no solution, take (1) = (12 , ) =2{(t+1), and

glu)=1+ u” . Note that g has no real zeros, g{0) > 0, and
1
P(s) 16 f°° du
—ds=-->n= —_—
./0 w(s) 3 - ~oo &)
Thus {2.7) has no solution by Theorem 2.3.

and

Example. The problem
{ (" = G =YY )1+, 0<t<d,
y0) =xy(1)=0

with 0 <a< 1, n>0, m>0, has a solution. To see this, take w(t) =",
o) = £+1,and glu) = (1 —w)"(2+uw)"(1 + uz) . Note that g has two zeros
of opposite sign, 7, =1 and r, = —2, and that g{0) > 0. In addition,

f’l du _/0 du__

o &u) J, glu ’

and f{(t,y,0) = {t2+l)/(y2+l) >0 for 1€ {0, 1) and y € R. Consequently,
all the conditions of Theorem 2.4 are satisfied, and hence (2.8) has at least one
solution. '

(2.8)

Remark. As can be seen from the above analysis, there are obvious extensions
to higher-order boundary-value problems. We omit the details.

3, INITIAL-VALUE PROBLEMS

Again in this section we treat first the case of separable variables and then

generalize. Consider
’

{ w(t)y =¢(gly), te(0,1],
y(0}=0.
We assume once again, without loss in generality, that g{0) > 0.

(3.1)

Theorem 3.1. Assume w, ¢:[0, t] — [0, c0) and g: R — R are continuous
with w >0 on (0,t], ¢ >0 on (0,1), g(0) >0, and ¢/y integrable on
10, 1.
(i) Suppose that g has a positive zero. Let r| > 0 be the smallest positive
root of g, and suppose that

FO0s) o o [
./0 w(S)dSS/o glu)’

Then (3.1) has at least one solution.
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(i) Suppose that g has no positive zero.
(a) If

9l [ A

o wis) o &lu)

then (3.1) has at least one solution.
(b} On the other hand, if

gitl] L
| vedz ) g

Then (3.1) has no solution.

2

Proof. To prove the existence of a solution in (i), we apply Theorem 3.1, s0it
remains to show that there exists a constant M , independent of 4, such that
SuDy 4 |v(t)| < M for each solution y to

(3.2) { w(t)y = ip(t)gly), te(0,1l,

with 0 < 4 < 1. First, ' > 0 in a neighborhood of zero. Suppose that y' >0
on {0, d) and y'(8) = 0. Then y(d) = r, . Consequently, integration from 0

to d yields
“du [ els) " gls)
f@ g(u)_lfo w(S)arS< 0 W(S)ds’

a contradiction. Thus ' >0 on (0, 7), 50 0 < y{z) <r, for t€(0, r). Now
existence of a solution follows from Theorem 1.3.

To prove {ii) (a}, let ¥ be a solution to (3.2). Now g(0) > 0 implies ¥ >0
and hence y >0 on (0, 1), so integration from 0 to ( yields

»it) t T o0
[ d_u=j‘/ﬂs}.ds<[@d_g</ Ei
o &lu) o wis) o wis) p  &(u)
Existence of a solution to (3.1) now follows from Theorem 1.3.
To prove (b}, let p be a solution to (3.1). Then integration from 0 to

yields
T his) /-"“) du < du
—tds = — < —_—,
/0 y(s) o 8 Jo gl
which is impossible. O

We now turn to the more general problem

{w(z)y’ fle,yy, te(0,1],

33 N
(3-3) »i0y=0.
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Essentially the same reasoning as above establishes:

Theorem 3.2, Assume that

¢ w:[0,7]—-[0,00) and f:[0, 1] x R — R are continuous with w > 0
on (0, 1];

* there are continuous functions ¢: [0, 1] — [0, o) and g: R — R with
80)>0, ¢>0o0n (0, 1), ¢/w integrable on [0, 7], and |f(t, y)| <
P()igv)l;

o f(0,0)>0; and

o ifr>0and f(t,r)=0 forsome t (0, 1), then g(r)=0.

(1) Suppose that g has a positive zero. Let r, > 0 be the smallest positive
root of g, and suppose that

T r
j‘-"—»(f»)—a'.S' < / 1 _q'_u_
o ¥(s) o &lu)
Then (3.3) has at least one solution.
(i1} Suppose that g has no positive zero. If

T oo
/ Md5</ ﬂ’
0 W(s) 0. &u)
then (3.3) has at least one solution.
O
Example. The initial value problem
Y =+ D= "), 1e(0, 1),
¥0)=20
with 0 < o < | and n > 0 has a solution. To see this, take w(1) = ¢,

b} .
)y =1"+1, and-g(y-).: I - y". Note that g has a positive zero r, = 1 and
that g(0) > 0. In addition,

(3.4)

" du
: o &(u)
and consequently (3.4) has a solution by Theorem 3.1. In fact (3.4) has a
solution on [0, 7] for each 7> 0.

¥

Example. Now
1/2_ ¢+ 3
(3.5) t"y =14y, te(0, ],
' y(0) =0
has a solution if 7 < n2/27 and no solution if t > n2/27. To see this, let
w(t) = M p(ty=1,and g(y}=1+ y3. Note that g has no positive zeros
and g(0) > 0. In addition,
~T o
B(s) 12 f du P
——ds =27 and —_—
/0 w(s) o &M 33
Hence Theorem 3.1 implies that (3.5) has a solution if t < 32/27 and no
solution if 7 > n°/27.
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