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Abstract. There is as yet no satisfactory description of the closed subalgebras of infinitely-
differentiable real-valued functions on a smooth manifold. The same is true of the algebra of
C* functions, fork > 1. The Stone—Weierstrass Theorem solves the problem for C 0 functions.
Whitney's Spectral Theorem provides a description of the closed ideals in the general case.
Nachbin described the maximal closed subalgebras of C K in 1949, and he responded to a
question of Segal by proposing a conjecture about the general case. We describe some further
progress on the problem, and a refinement of Nachbin’s conjecture.
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1. Introduction

(1.1) Let ¥y, ..., ¥, € C®°(R?,R) and let f € C®(RY, R). When do there exist
polynomials p, € R[xy, ..., x,] such that

Pn(lbl(x)e LR ] ‘,!'fr(x)) — f(x)

in the usual topology on C* (R4, R)? For instance, which f € C (R4, R) may be
obtained as

Iim p, (_1'3. coS X)

n—0Q

where the p,, are real polynomials in two variables?

One could also ask about C* approximation, for an integer k > 0, and other
variations.

In the case of C* approximation, that is, locally uniform approximation, the Stone—
Weierstrass theorem provides all the answers. It allows us to answer three different
problems about a given unital algebra A of continuous functions:

1. Whenis clos A = C%(X)?
2. When does f € clos A?
3. When is A closed?

For a C¥ manifold M, one has similar problems about subalgebras of C* (M), but
they are not so simple, nor do they reduce in this way to one problem.
We concentrate on the case k = oo, which is typical of C*, k > 1.
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(1.2) Let M be a connected C* manifold, and give C®(M,R") its usual Fréchet
space topology. Then C*(M) = C*(M,R) is a Fréchet algebra under pointwise
operations. Let A be a subalgebra of C*°(M), containing the constants. The main
problem we consider is to describe the closure of A in C*(M).

Briefly, the history of the problem is as follows.

Whitney [W] described the closed ideals. The problem is local, and closed ideals
are determined precisely by the point evaluations, point derivations and higher point
derivations that they annihilate.

Nachbin [N1] described the maximal closed subalgebras. They are all of codi-
mension 1, and apart from the maximal ideals one has the algebras

{f e C™: f(a)= f(b)}
where a, b € M with a # b, and the algebras
{feC™iaf =0}

where 8 € T M is a (first-order) bounded point derivation.
Segal asked in 1949 for a description of clos A, in general. Nachbin responded
with this conjecture:

f € clos A if and only if for each compact subset K of a coordinate patch such
that all functions of A are constant on K, and for each ¢ > 0 and k € N, there
exists p € A such that

0'p—8'fl<e onK, Viji|<k,
where @' denotes the partial derivative corresponding to the multiindex i € Zi.
It is of course possible to rephrase this in coordinate-free terms.

(1.3) We focus on the special case in which M = R and A is finitely generated.
These restrictions are of no great consequence.
Solet W = (Y, ..., ¥,) € C®(R?, R), and denote

R[‘l’] = R[‘)[!l\ LR "Jfr]'v A(‘p) = CIOSCoo(]Rd'] R[‘-I-’],
and
C®(W) ={goWVW:g e COM®,R)}.

Lemma 1. With the above notation, we have A(W) = closcee C® (W),

Proof. This follows at once from the fact that R[x;, ..., x,] is dense in C*(R", R)
in the C* topology. O

So we are interested in the functions f that may be approximated by compositions
gn oV, with g, € C°(R’", R). Consider a function f that is exactly equal to g o W
for some g € C*(R",R). Denoting the Taylor series at @ of f by T,/ and the
Taylor series minus its constant term by 7, f so that 7, = T, f — f(a). we have the
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chain rule
T,(g o V) = (Tw(a)8) o (T, ¥)

where o denotes the formal composition of power series. Thus f € R[[T, ¥]], where
for p € R[[xy,..., x4]1]" an r-tuple of formal power series with p(0) = O (that is, no

constant term) we denote

Rilpll={gop:qeRIx,.... %]}
The algebra R[[x, ..., x4]] of formal power series has a standard Fréchet algebra

topology, and the map

r . ] CO®RD = Rilx. ... xq]
il fe>Tof

1s continuous.

Lemma 2. Let p € R[[x),....x4]]", with p(0) = 0. Then R[[p]] is closed in
R[[xl ..... xd]].

We will shortly prove a strengthened form of this lemma, so we omit the proof.

Corollary 3. We have A(V) C (\,cpe(f : Tof € RIT, W11} o

When W fails to be injective, there is a tighter restriction on the elements of A(W).
First, we give the stronger version of Lemma 2.

Lemma 4. Suppose {p, : « € I} is a family of elements of R[[x1, ..., x4]]" having
Pa(0) =0, Ve € 1. Supposeq, € Rl[xy,....x]1(n=1,2,3,..)andgnopy — 1o
inR[[x),...,x4]] asn — oc, for each o € 1. Then there exists [ € R[[xy, ..., x]]
such thatty, = f o pg, Yo € 1.

Proof. Let py, gp, t, be as in the statement of the lemma.

Observe that g,,(0) = g, (pe(0)) — 1,(0), so all ¢, share the same constant term.
Let fq be this term.

We proceed by induction. Our induction hypothesis P is that f; belonging to

R[xy, ..., x.] (the space of polynomials in r variables of degree at most k) may be
chosen so that the following three properties hold:

(1) T = TX(fro pu), Ve €1,

(2) Vi>k 3 g €Rx,....x]; such that

T/ty =T/ (gj o pa), Yae€l,
og = &,



46 G. R. Allan, G.Kakiko, A. G. O’Farrell and R. O. Watson

and
3) Tifi=f for0<j<k

First we verify Py. Properties (1) and (3) are trivial. To verify (2), we fix j > 0
and begin by defining

Se = {g € Rlxy,...,x/]; ¢ TjtazT-f(qopa)}, Yo € 1.

Then each S, is an affine subspace of R[xy, ..., x,];, and hence is closed and finite
dimensional, or perhaps empty. In fact, S, is never empty. More is true.

Claim. Each finite intersection Sy, M - -- M Sy, 1s nonempty.

Proof of Claim. Fix a1, ..., ay, € I. Consider the linear space

V ={(T/(g o pa) -, T/(qo pa,)):q €RIxy, ..., x 1}
This V is a linear subspace of the ﬁnite-(_iimensional vector space (R[xi, ..., xq4];)",
and hence is closed. Thus (T4, .. ., T/t,,) € V,sothereexists g € Rlxi, ..., x];

with TV (g 0 pa;) = Tty fori=1,..., n.
This proves the claim.

Thus each intersection ()i, Sy, is 2 nonempty finite-dimensional affine subspace

of R[xy,.... xy]j. Thus there existe, ..., a, € I such thatdim ﬂL] S, 18 minimal,
hence
n
[} Se =[5 #©.
aecl i=l1

Pick g; € (Nyes Sa- Then g;(0) = 1,(0) = fo. Thus (x) holds (for k = 0), and
we have completed the verification of Py.

Now suppose fp, . ... fi have been chosen, and P, holds.

Forj > k+1let

Apyr,; = (T g, @ (%) holds}.
Then Aj+i,; is a nonempty affine subset of R[x, ..., x;]Ji+ and
Apt1,j+1 C Ak+1,j, Yi>k+1
Thus
dim Agyq,j4+1 < dim Ay j,
so there exists J > k + 1 such that Ay j = Ag+1,7, ¥j > J. Thus

+oC

ﬂ Argr,j = Aggy

J=k+2

is nonempty. Pick fi+1 € Ag+1,y. Clearly fi1 enjoys properties (1), (2) and (3),
with k replaced by k + 1.
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By induction, we obtain f; for all k € N, and, by property (3), { fi} converges in
Ri[xy,.... x,]] to a power series, f, such that T* f = fi Yk = 0. By property (1),
Tty = T*(f o pa), Vk, Ya,801y = f 0 po, Ya € 1. O

Corollary 5. Let f € A(¥). Then for each value b € im W there exist qp €
R[[x;. ..., x,]] such that
Tof =qpo T,V

whenever ¥ (a) = b.
This allows us to see that the following sharper statement is equivalent to Nachbin’s
conjecture:
Conjecture (f.g. case):
AW) = () 1f €C¥®") |3 € Rl[x1.... . x ] Taf = goT, ¥, Ya € V' (b)).
beim W

One may also formulate a similar version of the conjecture in the general case, in
terms of power series in an arbitrary number of indeterminates.

(1.4) Now we assume that W is injective (that is, R[W] is separating). Then the
conjecture simplifies to the formula:

AW) = () T, 'RIT,¥]).

acR?
In view of the fact that TG" RI[T,¥]] = R[[xy, ..., x4]] when rank DV (a) = d. we
may restate this conjecture in the form
(%) AW) = [ T,'RIT, %]
ascrit W

Here we have denoted the set of critical points of W by crit W. Note that since W is
injective we necessarily have r > d, socrit ¥ = {a : rank DW(a) < d}.
Progress to date on this conjecture is as follows.

Tougeron’s Theorem (1971) [T1]. Let W € C (R4, RN, Suppose that for each
compact K C RY there exist « > 0 and p > 0 such that

|W(x) — W) > alx —yf, Vx,yek.
Then (%) holds.

This applies in particular to all real-analytic W, and all ¥ such that crit W is discrete
and consists entirely of critical points of finite order. Tougeron actually proved a more
general result, which delivers the full Nachbin conjecture for real-analytic W, even
when W is not injective. More recently, we have shown that the conjecture holds for
all injective W in one dimension.
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Theorem A (1996) [A]. Suppose ¥ € C* (R, R") is injective. Then (x) holds.

The conjecture remains open in general, but we have made some progress on the
case of maps that are ‘at the opposite extreme’ to those covered by Tougeron’s result.
First, we define f to be flat at a if T, f is a constant series, i.e., T, [ = f(a).

Theorem B. Suppose W € C®(R?, R") is injective, and f € C™ (R4, R). Suppose
fisflaton critW. Then f € A(W).

As corollaries we obtain two more cases of the conjecture:
Corollary 6. If W is injective and is flat on crit W, then (x) holds.
Corollary 7. If V is injective and crit W is discrete, then (*) holds.

We will prove Theorem B below. Corollary 6 is immediate. Corollary 7 follows
readily, in view of Borel's Theorem [T2], which states that

T.C®®R®) =R[[x1,...,%4]l, VaeR?

that is, each power series is the Taylor series of some smooth function. Given f =
C® (R4, R) with
T.fe () T,'RIT, %],

aecrit W

Borel’s Theorem allows us to find g, € C*(R",R) with f — g, o VW flat at @, and
since crit ¥ is discrete we may patch these g, together to obtain a single g such that
f — g oW is flat on crit W, and hence, by theorem B, f € go W + A(V) = A(WV).

2. The ingredients of the proofs

(2.1) The basic problem in all cases relates to the diagram in Figure 1.

Given a map f : RY — R with the ‘right kind’ of Taylor series, we want to find
gn R — Rsothat g, c ¥ — f in C*, Tougeron’s approach is based on a clever
transfinite induction (with its origins in Malgrange’s work) combined with the use of
Whitney partitions on R", in order to construct g, directly. We call this a ‘right-side
approach’, because it operates on the right-hand side of Figure 1, and we observe that
such an approach has little chance of dealing with general W, and in particular with
places where W is flat in some directions. So we have developed a ‘left-side approach’,
precisely to deal with places where W is flat. As it turns out, the left-side approach has
more general application. The basic ingredient is the following simple ‘factorisation
lemma’, from [A].
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Figure 1

We say that a function f € C*(RY, R) is locally-constant near a closed set E
if for each a € E there exists an open neighbourhood U of @ such that f is constant
onU.

Lemma 8 ([A], Lemma 7). If ¥ € C®(R? R") is injective, f € C®(R4, R)
is locally-constant near crit ¥, and K is a compact subset of R?, then there exists
g€ C®(R",R) suchthatg o ¥ = f on K.

This reduces the problem of proving Theorem B to that of approximating a function
[ that is flat on crit ¥ by a sequence of functions that are locally-constant near crit ¥/,
To do this, we use some technical tricks: proxy distance, and the (7, E) equivalence
relation. We now describe these.

(2.2) The distance function x — dist(x, E), where £ C B¢, is a Lip 1 function, but is
usually no smoother than that. Itis convenient to have C* ‘substitutes’ for dist(x, E).
So we make the following definition.

Definition. Let E C R be closed and k,, > 1(m = 0, 1, 2,...). AC®* function
dg 1R — [0, 00) is called a {k,} proxy distance for E if

Ky 'dp(x) < dist(x, E) < kodg(x), V¥x € RY,
and

ID"dg(x)| < Ky dist(x, E)'™, V¥xeRY, ¥m > 1.

T depending only on d, such that each

nonempty closed set E C R4 has a {scp) proxy distance.

Lemma 9. There is a sequence {k,)
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Proof. Fix E C RY, closed. Let {¢,}°%, C C®(RY.R) be a standard Whitney
partition of the identity on RY \ E. Thus

0O<¢s<lonR > gu(x)=1 VxeR?

no more than N of the ¢, are non-zero at any one point, and letting £, = diam(spt ¢,,),
we have
p B, < dist(x, E) < uBy. VX € sptoy,

ID¥¢n(x)] < cxB*, VYx eRY, Vk>1,

where the constants N, w, and ¢; (k = 1,2, ...) depend on d but are independent of

E and n. See, for example, [T2]. Letdg(x) = ,T:{‘ Bn@n(x). Then one readily ver-
ifies that d is a {k, };,_, proxy distance for E, where ko = u and km = Newp" 1,
Yk > 1. O

(2.3) Given a function flat on crit ¥/, we are going to approximate it by a function that
is constant on various sets. In order to control its derivatives, we need to manage the
separation of these various sets. This is where (7, E') equivalence comes in.

Definition. Let £ ¢ R? and n > 0 be given. Let
N(E,n) = {x € RY : dist(x, E) < ).

For x, y € N(E, n) we say that x and y are (1, E) equivalent if there exists a chain
Bi.vay B,, of closed balls of R? such that radius B; = n, B; NE % @. B; N B # @,
x € By.andy € B,.

Lemma 10. (a) (n, E) equivalence is an equivalence relation on N(E, n).

(b) If x,y € N(E, n) are not (1), E) equivalent, then |x — y| > n.

(c) If E is bounded, then there are only a finite number of distinct (n, E) equivalence
classes.

Proof. This is easy to check. For (c), one obtains in fact that the number of equivalence

. _ : ;
classes is no greater than (for instance) (iw——_d‘?;“ E) .

(2.4) Now we have a lemma about the variation of a sufficiently flat function on an
(n. E) equivalence class. We say that f € C®(RY, R) is k-flat at a point a if T, f
has no terms of degree less than or equal to k, that is, D' f(a) =0, Vi < k. We let
varg f = supy f —infg f.

Lemma 11. Let f € C°(RY,R), R > 0,k €N, 0 < n < R, and

M= sup max |D’f|.
B(0.R) j<k+d+]
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Let E C B(0, R) be closed, f be (k +d + 1)-flat on E, x, y € N(E, n), and x be
(n, E) equivalent to y. Then

If(x) — FO)] < 29T M RYy*HL.

Proof. . Since they are (7, E) equivalent, x and y may be linked by a chain of balls
Bi...., B, of radius n, each meeting E. Since f is flaton E. Taylor’s formula with
remainder yields

varg, f < 2 Myt

We may assume that each B; meets only B;+j, son is at most twice the maximum
number of disjoint balls of radius n one may fit into B(0. 2R), son = (2R/n)?. Thus

IfG) = fFON =Y varg, f < 2T MR,

i=l

as required. O

(2.5) We can now prove Theorem B. By Lemma 8, it suffices to prove the following.

Lemma 12. Let f € C®(RY, R) be flat on the closed set E C RY. Then f is the
C™ limit of a sequence of functions f, € C °(R4, R) such that f; is locally constant
near E N0, n).

This in turn follows by a diagonal argument once we can show the following:

Lemma 13. Let f € C*(R9) be flat on the closed set E, and let R > 1 and k € N
be given. Then there exist g, € C (R4, locally constant near Eg = E NB(0, R),
such that

ID/(f —gw)l > 0 as n— 00, Vj<k

uniformly on B(0, R).

Proof. Choose k, > 1 such that each nonempty closed subset E C RY admits a

{km} proxy distance. Let § > 0 be given, with § < 1, and let n = 4ic*8 where
k = max{ky, : 0 <m < k). Let Ey, ..., E, be the (n, Eog) equivalence classes. Let
Hi wave g dy be {k,,} proxy distances for Ej, ..., E,. respectively.

Let ¢ (depending on §) be a C*™ function from R into [0, +oc) such that

¢(t) =1 fort < k6, 7
¢(t) =0forr > 2«4,
0<¢ =<1 on R,
16U < c;j/8/ on R, Vj=1,
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where the ¢; (j = 1,2, 3,...) are independent of . Pick p; € Ej, for each j, and let
gi(x) = (d;(x) - (fx) = f(pp), VxR,

fi=rf-> &
j=i

Then f € C™(RY, R). We claim that f; is locally-constant near E g and that | D/ (f —
fs) — 0asd | 0,Vj <k, uniformly on B(0, R).
To see this, we set

Uj={x eR?:dj(x) <28} and V;={xeR’:d;(x) e[k, 2)}.
Then U; is an open neighbourhood of E;,
dist(x, E;) < 2«*8 =n/2, Vx e Uj,
UiNU; =@ whenever j#1i,
Vi C Uy,
U; \ V; is an open neighbourhood of E;,
sptg; C Uj,
g =f—f(pj) onU;\ Vj,
and it is clear from these properties that f5 is locally constant near each E;, and hence

near Ep.
Furthermore, by Lemma 11,

|f = f(pp)| < 22T MRIn! on E;,

where _
M= sup max |D/f].
B(0.2R) j<k+d+1

Thus, since f is flat on E;, we get
|fx) = f(p)l < 22T MR T 4+ M dist(x, Ej)F! < coMs* !

for x € U}, where ¢ depends only on d and k.
We also have

IDU(f ) = F(pp)] = 1D fx)] < e Ma*i+!

for x € U;, where ¢; depends only on d, k and i.
One verifies inductively that

|D' (¢ od)(x)| < cldi(x)™", V¥xeRY, Vi<k,

where the ¢! depend only on d and i.
Thus we obtain the estimate

|ID'gil<c-M-8 onRY, Vi<k, Vje{l..., nl,
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where ¢ depends only on d and k. Thus, since the supports of the g; are disjoint,
ID'(f = fa)l sc-M-8 onRY, Vicsk
This yields the result. O
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