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A TAUBERIAN THEOREM ARISING IN OPERATOR THEORY
G.R. ALLAN, A.G. OFARRELL and T. J. RANSFORD

1. Istroductios

The genesis of this paper isthe observation that a recent result of Katznelson and
Tazafriri[4] in operator theory uses a theorem of tauberian type ( Theorem 2 ) that is very closely
parallel to a tauberian theorem used by D. J. Newman [6} in his simple proof of the Prime Number
Theorem. [See also Korevaar [5]. An adaptation of Newman's proof by Zagier, communicated
privately by L. Zalcman, uses athird tauberian theorem of a similar kind. ]

Katzneison and Tzafriti used arguments of harmonic analysis to prove their tauberian
theorem. Our main result (Theorem 4 ) is 8 more general theorem of tauberiantype which we prove
by complex-variable methods which are an extension of Newman's approach. Apart from ite
operator-theoretic consequences (Theorem 5), this provides a new proof of the result of
Katznelson-Tzafriri.

The simplest form of the Katznelson -Tzafriri result on operatorsis as follows. (We

write I ={z€ C:|zg}=1}).

THEOREM 1 ([4)). L&t X bea complex Banach space, T € L(X) and suppose that

sp|| 72| <00. Thea |T%- T™||» 0 if (aadonlyif) SYT OT) C {1}.

In connection with this last result, we observe that the ‘onty if’ partistrivial and that the condition
that sup || T2 [|< 00 immediately impliesthat SXT) C {z€ C:|zj< L}.

The special case of Theorem 1 in which Sp(T) = {1} was proved by Esterie [1]
(Theorem 9.1)in a very brief and elegant argument, using a simple result ahout entire functions of
minimal exponential type.

In [4}, Katznelson and Tzafriri deduce theirresult from the following tauberian

theorem.

THEOREM 2 ([4]). Ler(a, ) be a bounded sequence of complex aumbers and sex

= D 8" (lzj<i).

n2xl

Suppose thar every point of T\{1} £s4 rygularpoistior £, then 4, - &, — 0 &5 4 0.
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Reméark. We may not in general conclude that the sequence (8, -4, )isinan Hf\“"‘“

L - class, as has been shown by T. J. Ransford in a private communication. In fact, if we take
(m),,, tobe asequence of integers suchthat m, > 1, m, >2my +1 (k=1), set

0, =1/ log m, andthendefine

2my

[z(l + ezp(iﬁt)z)]

B

Kz) =

forall z€ U= {z€C: |Z(1+2)/2| < 1}, thenf is a weli-defined analytic function oa U. If

3 a_7® isthe Tayloc series of £ on {jz}< 1} , thena,| < 1 (all n), but 2 |a, - 8, |?
diverges forevery p 2 1. We shall not give the details.

Tobring out the tauberian nature of Theorem 2, it is helpful to recast it in terms of the
function g(z)= (1 - Z)f(z). (We shall write A and A~ for the open and closed unit discs,
respectively.)

THEOREM2'. Zetg(z)be analyticoa A \{1}, withg(z)= Z bzt anh, where

sup|zb |< 0. Then 2 at,*mmgemg(c)fa-m LeT\{1).

This last result is stronger than Theorem 2 in that it asserts the convergence of

> b, t* on T \{1} and not merely that b, — 0. However, by a classical result of Fatou and

M. Riesz (seee.g. [7], §7.31),if 2. b, z*isa power series, with radius of convergence 1, such

thatd, — 0, then the series converges at all regular poiats of T’ From Theorem 2’ a more precise

version of Theorem 1 follows (the notation being asin Theorem 1):

THEOREM I'. L&t T € L(X) with sup || 77 || < o0 sndsuch that Sp(T )NT C{1}. Then,

facenxy LET\[1), theseies 2 28 (T2 - T2*1) fsnoem - coaveqgent ia L(X).

ox0
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We observe that, asin [4], the deduction of the operator theorem from the result of
complex anatysis requires a form of Theorem 2 (or 2') in which the sequence (a, ) (respectively
(b,)) mey cansist of elements of a complex Banach space and not just complex numbers. This
srengthening comes from entirely standard techniques of functional analysis, coupled with the
observation that the convergence asserted in Theorem 2 (respectively Theorem 2°) is uniform over
certain normal families of functions. Thisfact comes with no extra effort from the given proofs and
we shall make no further reference to the point, beyond abrief remark at the end of the proof of
Theorem4.

We shall now refer briefly to Newman's proof of the Prime Number Theorem, which
was mentioned at the beginning of the paper. Newman's proof hinges on the foliowing tauberian
result, whose close analogy to Theorem 2' is evident.

THEOREM 3 (D. J. Newman [6]). .Le¥ (4, ) be 8 bounded sequeace of complex aumbers aad let

fg)= 2447 (Rez>1)

azi

If every poiar of {Re z =1} fsareguler point for £ then 2 g 0\ convegesioff 1).

axl
This tauberian theorem is, in fact, asis stased in [6], contained in a more general result of ingham
([3)). In [6], Newman proves thetheorem by an elegant and elementary use of the Cauchy integral

formula (Forthe Prime Numbes Theorem, the applicationis witha = |i(n), Where |1 is the Mobiug

function). In the next section, e shall adapt Newman's method to give a considerable extension of
Thecem 2'.

2. Atamberiantheorem.

THEOREM4. Let ff7) = 2 & z° taversdiusofconvegpeace | aadlet E C T beitssetaf

ax

singulsr points. Suppose that E has lincar measure zero and thit, for some M > O,
N
| ot l< M (alf N2 0, 2l b, € F).
a=0
MEO" 27 convergesto fiz) for all zin T\ ) inperticular, 4,— O 45 4 00.

Rentauks:

I TR . B . S SR |
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counter-example is provided by the binomial series 2 (n;(! )zn. where @ = -1 + ic, with
n

real ¢ = 0, This series converges to the principal value of (1-z)* forall z€ A™\{1} butis not
convergent at Z= |, where it oscitlates finitely. In fact the series has the even stronger property that

jts partial sums are uniformly bounded on A”; clearly 1 is the anly singular point on I'. The details
of the calculations for this example may be foundin [2], § 6.11.
2. We do not know whether the condition that E have linear measure zero is necessary for the

conclusionthata, — 0 ( and so for 2 a_ 7" to converge on I' \ E, by the Riesz result). One case

atthe opposite extreme from Theorem 4, where the conclusion does holdisthatin which I isa

natural boundary for the series, i.e. E =T Inthat case, the conditions ensurethat f € HO, so that

2 a, 2" converges for aimost aliz € T, by Carleson'stheorem, and certainlya — 0.
Proaf of Thearem 4. 'We may suppose that f is analytic on an openset UD A"\E.
By rotation, we may assume that 1 € U anditis enough to prove convergence of the series at

z=1. (Inview of the Riesz result, it would actually suffice to prove thata, — 0; however the
direct proof of convergence of the seriesis hardly more difficult and we therefore give it, for the

convenienceof thereader. )

For most of the calculation it isconvenient to change the variable, by putting
Z=(W-i)/(w+1i). Then, underthe mapping z — W, we have:
A- {Imw>0});
1 - co
E — F, say, a compact subset of R of linear measure zero;

U - V, say, an open subset of Cp,, with

VDO {Imw>0} U {R\F} U {00}

) then g is analytic on V and we have to prove that

If g(w) = ; a (: ;li

Y B Y D T W B S T S



S5
s w-i Y
o = 2a(550)
Now choose R > 2suchthat V O {w:[w| > R -2} and then choose £, 0<£< 1.
Wecoveeryaﬁnitecoﬂecdonofdisjointopenintervalsll, . Iq , Where, say,

|
L=(0-¢,0+§) suchthat FNL = G (allj), y € s € and 1/2 < €/ 6 < 2 (altjk).

1

(To seethat this choiceis possible, recall that Fistotally disconnected).

We now introduce a contour I' C V, thatis most easily described by reference to the
figure: forj=1,...,q, weletB, be the semicirclein the upper half - plane With diameter I, ,

B={q +Eieie:0$ 8 <7 ); Cisthe unionaof the{(q + 1) subintervals of [-R, R] that are

q
complementaryto U: B, , buttranslated a (small) distance &8 >0 betow the real axis, together
F

with the 2q vertical segments, each of length 8, joining the ends of these latter subintervalstothe
ends of the semicircies B;; the number § is chosen so small that g isasalytic on and shove the

1
curve segment formed by C L k.l) Bi ; the portion A of the contour is formed by that arc of the

circle {jw] =R } that is contained in the half-plane {Im w < -3}. We then form the simple closed

q
path T = A+C+ D B, by joining upinthe obvious way; evideatly I' CVand g is anafytic on
1

and outside I' (including at co). In the figure, V is the unshaded region and we have taken q =3.



Define therational functions:
£ w+i Y
O(w) = g -—Lb— ,  O.(w) = (—'—) 8(w),
g ( (w_ai)2 N( w-1
andthen set

A
Iy = I(g(w) - B\(W) ) (W + ) B, (W) dw.
r
Theintegrandis analytic outside T (the singularity at w=1 isremovable) and so, by Cauchy’s
theorem, forevery S >R,

I = [ @ - gy + i oy aw
=8

= I (800 - gN(oo)) W+ i)—xeu(w) dw + O (é) ,
M=8

as S~ 00, sothat
Iy = 2M(5(0) - go0))-
We remark that the above formula would, of course, also be valid without the factor BN(w), which
satisfies 0, (00)=1. However, this factoris chosen precisely to cancel the growth of the integrand
nearthesingularsetF.ThisdeviceisindirectimimﬁonofNewman‘smethodin[G];itisinthis
respect that our method is an extension of his.
Toestimate],, weshal! estimate separately:
1
® [ - s@) v o mow ;
2B

0 [aym oy oymaw ;

A+C

(©) ] g(w) (w + i)-1 (W) dw .

A+C

In carrying outthese estimates we require the following technical lemma, whose proof we defer
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LEMMA. Willizhe aocsionesceblished above, lec 2. b, 7 be 8 power sexies Such thet

£
S 65| < 2M (a2 0, ALEF).
£=0

q
Then, foralfw € \J B,
f=1 J
|Se, E2 ) wen'e 16 MR’
4% — (w+1) B(w)| < .

We now complete the proof of Theorem 4 by catrying out the estimatesfor (2), (b)
and (c) above.

q
(2) Leewe \J By Then
=

o () - Sy

If { € Ethen, forallK20,
K . MK
Izﬁmﬁ l = |Za,§p‘ < 2M,
k=D p=N
by the hiypothesis on f. Hence, by the Lemma,

”(g(w) - B (w +) 8™ dw | < Zlength (B).16 MR’
3B, =
}

21!& IGMR £ 1611.MR£
j=1

independently of N.
(b) Theintegrand g (WKW + i) 16, (w)is analyticexceptat {i, @, @), ..., & }.
Hence, by Cauchy's Theorem, writing D, for the reflection of B, in the real axis G=1.....9,

]gN(w) Wi B (W)dw = - [ £(W) (W + i? B, (W) dw .
AC 3D.
}

An estimate very similar tothatin (a) (considering the conjugate of the last integral, in orderto

have anintegral over 2 B, )then givesagain,
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[aam e+ oymon| < 16xm’,
MC

independently of N.

(c) Let L=sup_ . o, |8(W) (W +i)! O(w)|, which is independent of N. Then,

”g(w)(w+1) Ou(w)dwl < LJ '“I

A+C

i w+i
Sinee | —

w-1

< 1 foralwe A+ C (becamse A+C C {Imw < 0}),ifolows, by

the Bounded Convergence Theorem, thatthereis same Ny(€) suchthat

LJ "“I [ew] < ¢ @ 2N).

MC

Combining the estimates for (a), (b) and (c), we have, forall N> N,,,
|2 (g(oo0) - gp(00) )| < (B2MMR? + 1)t

Subject to the Lemma, this completes the proof that g,(00)— g(co) asN— co.

Proof of the lemma, Without lass of generality, suppose that W € By, say w =« + €, i,

where 0 < 6 < . The requiredinequatity wilt result from the following four estimates :

2
oIS G) 1« 2

sin §
@lw+iyty < 1,
(i)} - €2/(w-a | =2sin0;

@) |1 - €2/(w - a)2| < 1, forallj=1.
Of these, (ii) and (iii) are more or less immediate; we shall give some detmlsfor(z)and(w)

(@)LetP e, NFand writez = (W-i)/(W+i), { =@ -i)/ (B +i), sothat{ € E.Let

= 26t @20, 5, =0.
=



Then

2.0, (:SI)H - 287 - ;hnﬁn(z&f

- s ) = s (- @™
nx0 nx0

By hypotbesis, |s |< 2M forall n and so
|3 (35i ) | < omli-ae] Zhasl

= aM|g-z]/(t-1)
< 4M |C-z|/ (1-1zP).
Itisnow an elementary exercise toshow that |, - 2| < 4 €, While 1-jzf 22 ¢, sin @ /R?;
theestimate statedin (i1)is now immediate.
(iv)Takej=1; then
|1-g2w-ar|=|1- alzl(al-ai+£1e*°)2|
will be less than or equal to 1if and only if

|(al-ai+e1e‘°)2/c]2 -1] < |(a1-ai+elei°)zlc|3 - 0],
which holds if and oaly if

Re[(a, -+ g, &%/ €2] = 1/2.

Bntthevaﬁdityofthislastinequalityisanelementaryexemise,usingthefactt.hatall € 212
for all j = 1. This completesthe proof of the lemma.

Remart 1t is plain from the proof of Theorem 4 that, for fixed U, E, M, if Fisa
normat family of functionsanalytic on U and satisfying the tauberian conditionrelativeto E, M,

then, for each z € T\E, the series 24 2° convergestof(z) uniformly with respectto all finF. By
astandard Hahn - Banach argument, it follows that the theorem (with norm signsin appropriate
places)is also valid for anaiytic fanctionstaking their valuesin acomplex Banach space. The
following result, an extension of Theorem 1, is a deduction from Theorem 4 in this 'Banach-space
valued' form. Weremark that, in Theorem 5, the equivaleace of (i) and (ii) could be deduced from
results in 141 while (iii) is. we believe. new.
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THEOREMS. Let ¢(:)=z ¢, z°% where > 2| g j< 00. Let Thealinesropersiorond
camplex Banach space X, such tharsup || T77||<00. Theathefollowing statementsareequivaleat .

@IKT)T"|| - 0 as2 = ©c0;

@)sp T NT C {¢=0};

(@f)Sp T NT haslinesrmessure Zero, aad Z@(T) 7 27 convergesto

N TY [-z7 Y, whegever z1 € T\Sp 7.
[ Remarks (a) Inthis theorem O(T) is defined as 2. ¢, T®, whichiscertainly norm-convergent

in L(X), since zn|cn|<oo.
(b)Thespeciai cased(z) = 1 - z gives Theorem 1.]
Proof. (iif) = (1): thisis clear.

(1) = (if): Let Abe amaximal commutative subalgebra of L(X)that contains T andlet @ ,
be its space of characters. Then

SppefT) = Spa(M = {A(M):XE P, }.
Lee neSpTNT and choosey € ®, suchthat ¥(T) =T ;then
o1 = 16| = 16(D)- 1T = DT < DT = 0,
asn — o0 ;thus §(n) = 0.
() = (ii): Since § € A* (T) (absolutely convergent Taylor series), condition (ii) certainly
implies that Sp T M T has measure zero (exceptin the trivial case when ¢ =0). Let
f(z) =£(T) (1 - zT)"!, which is analyticin a neighbourhood of A\E, where

E={{eT: ! e SpT). SinceEisthe conjugate of a zero-measure subset of T, it too has

measurezero.

Nowf(z)= & ®(T)T®2® (|z|< 1), so that the result will follow from Theocem 4
{for Banach - space valued functions) provided that thereis some positive constant M such that

T w e Ly R Y TR Y. U N T R
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To see that this Iast condition isin fact satisfied, note firstly that, writing
k
5(z)= Y ¢, thenforali { € E we have:
=0

2 = Dlsey- ot = 2] Deey ]
k=0 k=0 k=0

j=k+

o« 0 L

s 2 0lel < Qilgl <

k=0j=k+ j=0

Henceforall { € Eand N2 0,

N N o B o
ZKDT"E” - 2 atten™ - ;Z‘;(w Hy-s ¢ H)en™

=0 k=0

Nik+1 ) '

N o 00
D ) s CHED™ - ™) = D et -
=0 k=0 k=0
and so,

N oo o0
12407 < 2lsehH] et - €™ « Cile]) 2s0p17°y,
=0 k=0 i

which concludes the proof.
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