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Abstract We consider questions of rational and polynomial approximation, and re-
lated extension questions, for various normed spaces of infinitely differentiable functions
on perfect compact subsets of the complex plane C and the real line R. We obtain an ap-
proximation theorem for compact planar sets which are, in a precise sense, locally radially–
self–absorbing. All smoothly–bounded compact sets are of this type. We give a variety of
results and counterexamples on extension, mainly in the one-dimensional case. We also
prove polynomial approximation theorems for totally–disconnected sets, linear sets, and
some others.

1. Introduction.
Classes of infinitely differentiable functions have been extensively studied (see, for example,
[BA], [BR], [CM], [K], [M], [W]), but these studies addressed questions concerning nuclear
or Fréchet spaces. Less work has been done on the related normed spaces, which require
more delicate analysis.

In this paper, we consider the normed spaces D(K,M), where K is a perfect, compact
plane set, and M = {Mn}n≥0 is a sequence of positive real numbers. We shall give the
definitions of these spaces of functions in Section 2. They were initially studied by Dales,
Davie and McClure, with particular reference to the case where D(K,M) is a complete
normed algebra. In [DD] Dales and Davie gave some sufficient conditions for the space
to be complete, examined its character space, and investigated peak points, and quasi-
analyticity. They also gave a negative answer to a question of Curtis on the automatic
continuity of functions which operate on a natural Banach function algebra. In [DM],
Dales and McClure proved that, if K is the closed unit disk, then the polynomials are
always dense in D(K,M). A similar result for rational approximation on the annulus has
been obtained by Honari [H].

In the one-dimensional case, some results on polynomial approximation were Obtained
by one of us in [O1]. It was shown under very mild conditions on M that the polynomials
are dense in D(I,M), where I is a closed interval.

We say that a set E ⊂ Rd is radially self-absorbing if for each r > 1, we have

E ⊂ int(rE),

where rE is the dilation of E defined by

rE = {rx : x ∈ E}.

Such sets are star–shaped with respect to the origin. In Section 3 we shall see that, if K is
a compact plane set which is radially self-absorbing, then the restrictions to K of functions

* This work was supported in part by EOLAS grant SC/90/070

1



holomorphic on a neighbourhood of K are dense in D(K,M). In the Banach algebra case,
and provided that all the rational functions with poles off K belong to D(K,M), it will
follow that the rational functions, and indeed the polynomials, are dense in D(K,M).

By a localization argument, we obtain a similar result for compact sets K that are
locally radially self–absorbing in the sense that for each point a ∈ K there is a closed
neighbourhood N of a and a point b ∈ K ∩N such that the set

(K ∩N)− b = {x− b : x ∈ K ∩N}

is radially self–absorbing. The result we prove is that if K is locally radially self–absorbing,
then those functions in D(K,M) which have suitable global extensions can again be ap-
proximated by functions holomorphic in a neighbourhood of K.

It is readily seen that a compact K ⊂ C is locally radially self–absorbing whenever
K has dense interior and the boundary of K consists of a finite union of pairwise disjoint,
smooth Jordan curves.

Our method of attack on the approximation problems raises the question of the ex-
istence of suitable extensions. Little has been done in this area, for the normed spaces.
In Section 4, we give a variety of results on extension questions in one dimension. We
show that the answers obtained when Mn = (n!)α for some α are different from those
obtained when Mn is very rapidly increasing, e.g. Mn = 22n

. In Section 5, we prove some
more approximation theorems. In particular, we show that the polynomials are dense in
D(K,M) for many M and each compact perfect set K ⊂ R.

2. Preliminary definitions and results.

We denote the space of infinitely–differentiable complex-valued functions on Rd by C∞(Rd).
We identify C with R2, so C∞(C) consists of those functions from C to C having partial
derivatives of all orders, whether or not they are analytic. We denote the n-th Fréchet
derivative of a function f : Rd → C by Dnf . For each a ∈ Rd, Dkf(a) is a symmetric
k–linear function on (Rd)k. We need to fix a convention about the norms of such objects,
and record a few observations.

If A : (Rd)k → C is symmetric and k–linear, then we let

|A| = sup{|〈(x1, . . . , xk), A〉| : |xi| ≤ 1, ∀i}.

The symmetric product of a symmetric i–linear function A and a symmetric j–linear
function B is defined by

〈(x1, . . . xi+j), A�B〉 =
1

(i+ j)!

∑
σ∈Si+j

〈(xσ(1), . . . , xσ(i)), A〉〈(xσ(i+1), . . . , xσ(i+j)), B〉.

Here Si+j denotes the symmetric group on i+ j symbols.
We have

|A�B| ≤ |A| · |B|.
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Leibnitz’ rule gives

Dk(f · g)(a) =
k∑

j=0

(
k

j

)
Djf(a)�Dk−jg(a),

so

|Dk(f · g)(a)| ≤
k∑

j=0

(
k

j

)
|Djf(a)| · |Dk−jg(a)|.

Also
|Dk(∂jφ)(a)| ≤ |Dk+|j|φ(a)|,

whenever j is a multi–index.

Let S be a set, let V be a normed vector space, and let f : S → V be a function.
Then the uniform norm of f on S, ‖f‖S is defined by

‖f‖S = sup{|f(x)| : x ∈ S}.

Let {Mn}∞n=0 be a sequence of positive numbers. For 1 ≤ r <∞ we set

E(d, r,M) = {f ∈ C∞(Rd) :
∞∑

n=0

(M−1
n ‖Dnf‖Rd)r < +∞}.

E(d, r,M) is a Banach space with respect to the norm

‖f‖ =

( ∞∑
n=0

(M−1
n ‖Dnf‖Rd)r

) 1
r

.

We define E(d,∞,M) to be the corresponding Banach space defined using suprema.
We abbreviate E(d,M) = E(d, 1,M).
Now let K be a perfect, compact subset of C. We say that a function f : K → C is

complex-differentiable at a point a ∈ K if the limit

f ′(a) = lim
z→a, z∈K

f(z)− f(a)
z − a

exists. We call f ′(a) the complex derivative of f at a. Using this concept of derivative,
we define the terms complex–differentiable on K, continuously complex–differentiable on
K, and infinitely complex–differentiable on K in the obvious way. We denote the n-th
complex derivative of f at a by f (n)(a). We then define normed spaces D(K, r,M) of
infinitely complex–differentiable functions on K with norms corresponding to those in the
spaces E(2, r,M): f belongs to D(K, r,M) if it is infinitely complex–differentiable on K
and the lr norm of the sequence

‖f (n)‖K/Mn
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is finite.
If a compact set K is a subset of R, then we regard it as lying on the real axis of C

and interpret D(K, r,M) accordingly. For such sets, “complex differentiablity”on K just
means differentiability is the usual (real–variable) sense.

All polynomials when restricted to K belong to each D(K, r,M). When 1 ≤ r ≤ ∞
the space D(K, r,M) includes all the rational functions with poles off K if and only if

lim
n→∞

(
n!
Mn

) 1
n

= 0. (1)

We say that M is a nonanalytic sequence if (1) holds.
We abbreviate I = [−1, 1].
We abbreviate D(K,M) = D(K, 1,M).
If the sequence M satisfies M0 = M1 = 1 and there exists a constant κ(M) > 0 such

that
Mn

MkMn−k
≥ κ−1 ·

(
n

k

)
(2)

for all non-negative integers k, n with k ≤ n then D(K,M) is a normed algebra. More
precisely, the equivalent norm f 7→ κ‖f‖ is an algebra norm on D(K,M) (i.e. it is
submultiplicative). In general D(K,M) is incomplete.

A few words about the precise relation of Frechet derivatives and complex derivatives,
and the spaces D(K, r,M) and E(2, r,M) are in order. If f ′(a) and Df(a) both exist,
then for u ∈ C(= R2),

〈u,Df(a)〉 = f ′(a)u,

(where the lhs denotes the action of the linear function Df(a) on the 2-dimensional vector
u, and the rhs denotes the product of the complex numbers f ′(a) and u). Similarly, for
higher derivatives, we have

〈(u1, . . . , uk), Dkf(a)〉 = f (k)(a)u1 · · ·uk,

and
‖Dkf(a)‖ = |f (k)(a)|.

If f belongs to E(2, r,M), then the restriction f |K belongs to D(K, r,M) provided f
is complex–differentiable onK. To be complex–differentiable onK, f must be holomorphic
on the interior of K, and may also have to satisfy other conditions. If the interior of K
is dense in K, then it is sufficient that f be holomorphic on intK. At the other extreme,
if K is a C∞ nonsingular curve, then each element of E(2, r,M) restricts to a member
of D(K, r,M). In general, a function f ∈ E(2, r,M) will not restrict to an element of
D(K, r,M) unless it satisfies special conditions at many points of K ∼ intK. These
conditions include the point Cauchy–Riemann condition

Dk

(
∂̄f

∂z̄

)
(a) = 0 ∀k,
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at each point a for which the germ of K at a does not fit into some C∞ curve.
We say that M is an algebra sequence if (2) holds, and we call κ an algebra constant

for M . For such a sequence, E(2,M) becomes a Banach algebra (i.e. a complete normed
algebra, with submultiplicative norm, cf. [R]) when endowed with the above equivalent
norm.

Note that the (“Gevrey”) sequence Mn = (n!)α is an algebra sequence for α ≥ 1, and
is nonanalytic for α > 1.

If M is an algebra sequence, then we call it a non–quasianalytic sequence if

∑
n

Mn

Mn+1
< +∞.

One can show that each non–quasianalytic algebra sequence is non–analytic.
The classical Denjoy–Carleman theorem [R, Chapter 19] assures us that if M is a

non–quasianalytic sequence, then there exist functions f ∈ E(1,M) which have compact
support but are not identically zero. The same is true of E(d,m) for each d. In fact, if
f ∈ E(1,M) is not identically zero and has compact support, then each of the functions
(x1, . . . , xd) 7→ f(xi) belongs to E(d,M), and their product is not identically zero and has
compact support. It follows easily that each open covering of C has a subordinate partition
of unity consisting of elements of E(2,M).

A compact plane set K is uniformly regular in the sense of Dales and Davie if, for
all z, w in K, there is a rectifiable arc in K joining z to w, and the metric given by the
geodesic distance between points of K is uniformly equivalent to the Euclidean metric on
K.

If K is a compact plane set which is a finite union of uniformly regular sets, and M
is a sequence of positive real numbers, then D(K,M) is complete, and hence is a Banach
space [cf. DD, Theorem 1.6]. If K ⊂ R, is compact then D(K,M) is complete if and only
if K has only a finite number of connected components.

The following question appears to be open: Are the rational functions with poles off
K dense in D(K,M) whenever K is a perfect compact plane set and M is a nonanalytic
sequence?

Given a perfect set K ⊆ C, a number r, and a sequence M , we will also be interested
in the subspace D1(K, r,M) which consists of those elements of D(K, r,M) which have
extensions in C∞(C). Since K is perfect, these correspond precisely to the appropriate
subset of the C∞ Whitney jets of functions on K. We shall see that D1(K, r,M) may be
a proper subset of D(K, r,M).

Given r and M we have the sequence space lr(M−1
n ) consisting of those sequences

(αn)∞n=0 such that (αn/Mn) ∈ lr. We also have a norm decreasing linear map

ρr : E(2, r,M) −→ lr(M−1
n )

defined by
ρr(f) = (f (n)(0))∞n=0.
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We may now ask the question: for which sequences (Mn) and which r are the maps
ρr onto? Similarly, for K ⊆ C we may ask which functions in D(K, r,M) have extensions
in the space E(2, r,M)?

In Section 4, we consider extension from compact subsets K ⊂ R, and we show the
following:

• (1) There are nonquasianalytic sequences M such that ρ1 : E(1,M) → l1(M−1
n ) is

not surjective. An example is Mn = (n!)α, α > 1.
• (2) For all sequences M that grow sufficiently rapidly, the map ρ1 is surjective (and

there is a linear lifting). An example is Mn = 22n

.
• (3) For each sequence M and each r ≥ 1 there exists a perfect set K such that not

all functions f ∈ D1(K, r,M) have extensions in E(1, r,M).
• (4) For each sequence M there is a perfect set K such that 0 ∈ K and each sequence

{αn} ∈ l1(M−1
n ) is obtained as {f (k)(0)} for some f ∈ D(K,M).

In Section 5, we present a method which reduces rational approximation in D(K,M)
spaces to the case of connected K, and we use it to obtain approximation theorems for
arbitrary sets on the line and for totally-disconnected sets in the plane.

3. Approximation results for plane sets.
(3.1) We begin with a result on holomorphic approximation for sets which are radially
self–absorbing.

Lemma 3.1. Let K be a compact radially self–absorbing plane set. Then, for 1 ≤ r <∞
and any sequence M , the set of those f ∈ D(K, r,M) which are restrictions of functions
holomorphic in a neighbourhood of K is dense in D(K, r,M).

Remarks. Every such set K is perfect, starshaped, and has 0 ∈ int(K). In fact, such
sets K have the form {reiθ : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ R(θ)} for some continuous, pos-
itive, real-valued function R on [0, 2π] with R(0) = R(2π). Such sets K need not be
uniformly–regular, or even finite unions of uniformly–regular sets. If the function R is
piecewise smooth (or equivalently, if bdyK is piecewise smooth), then K is a finite union
of uniformly–regular sets, so D(K, r,M) is complete.

Proof. Let f ∈ D(K, r,M). For z ∈ K and n ∈ N, set fn(z) = f( n
n+1z). It is enough to

show that fn → f in D(K, r,M). First note that, for all n, k,

‖f (k)
n ‖K ≤ ‖f (k)‖K ,

so that fn is in D(K, r,M). Clearly ‖f (k)
n − f (k)‖K → 0 as n → ∞, and so the result

follows by dominated convergence.

Corollary 3.2. Let K be a compact radially self–absorbing plane set for which D(K,M)
is complete. Suppose that M is a nonanalytic algebra sequence. Then the polynomials are
dense in D(K,M).

Proof. Let Z denote the coordinate functional on K, set A = D(K,M) and let B denote
the closure in A of the polynomials. Then the spectrum of Z in A is just K, as is seen
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by using the rational functions 1/(Z − a). Since C ∼ K is connected, it follows that the
spectrum of Z in B is also K. Applying the holomorphic functional calculus to Z ∈ B, we
see that all restrictions to K of functions holomorphic on a neighbourhood of K lie in B.
The rest follows from the case r = 1 of the lemma.

Remark. It is possible to drop the hypothesis that D(K,M) be complete. See section 5
below.

Next we give a version of the lemma for E(2,M) spaces. This result is only interesting
in the non-quasianalytic case.

Corollary 3.3. Let K be a compact radially self–absorbing plane set. let 1 ≤ r < ∞
and let M be any sequence. Suppose that f ∈ E(2, r,M) has compact support, and is
holomorphic on int(K). Then f may be approximated in E(2, r,M) by functions that have
compact support and are holomorphic on a neighbourhood of K.

Proof. As in the proof of Lemma 3.1, we define fn(z) = f( n
n+1z), for z ∈ C and n ∈ N.

Again, for all k, ‖fn
(k)‖K ≤ ‖f (k)‖K , and it is still true that f (k)

n → f (k) on K as n→∞,
because the support of f is bounded. The result follows, as before.

(3.2) We move now to more general compact sets, and our main approximation theorem.

Theorem 3.4. Let K be a compact subset of C that is locally radially self–absorbing. Let
M be a non–quasianalytic algebra sequence. Let f ∈ E(2,M) be analytic on intK. Then
there exists a sequence Fn ∈ E(2,M) of functions that are holomorphic on a neighbourhood
of K, converging to f in E(2,M) norm.

The proof of this theorem is based on the use of the Vitushkin localisation operator
Tφ. This familiar tool of approximation theory [O2] is defined by the formula

Tφf = C(φ · ∂̄f),

where φ ranges over test functions (C∞ functions having compact support) and f ranges
over complex–valued distributions on C. Here C denotes the Cauchy transform:

Cg =
(

1
πz

)
∗ g,

and

∂̄f =
1
2

(
∂f

∂x
+ i

∂f

∂y

)
.

This operator has the property that

∂̄Tφf = φ · ∂̄f,

so that Tφf is analytic wherever f is analytic and also off the support of φ.
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We can use the Tφ operator with φ ∈ E(2,M). The fact that M is non–quasianalytic
entails that we can find a partition of unity subordinate to any given covering of the plane,
and consisting of elements of E(2,M).

Let us denote by M− the sequence M shifted one place right:

M−
n =

{
Mn−1, n > 0,

1, n = 0.

M− shares the property of non–quasianalyticity with M . Observe that

‖∂̄f‖E(2,M) ≤ ‖f‖E(2,M−),

since |Dk∂̄f | ≤ |Dk+1f |.

Lemma 3.5. Let M be a non–quasianalytic algebra sequence. Let f ∈ E(2,M) and
φ ∈ E(2,M−). Suppose that φ has compact support. Then Tφf belongs to E(2,M).

Proof. Since C inverts ∂̄ on compactly–supported distributions, we get

C(φ · ∂̄f) = C
(
∂̄(φf)− (∂̄φ) · f

)
= φ · f − C

(
(∂̄φ) · f)

)
.

Since M is an algebra sequence,

‖φ · f‖E(2,M) ≤ κ · ‖φ‖E(2,M) · ‖f‖E(2,M).

where κ is an algebra constant for M . Thus∥∥(∂̄φ) · f
∥∥

E(M)
≤ κ ·

∥∥∂̄φ∥∥
E(M)

· ‖f‖E(M)

≤ κ · ‖φ‖E(2,M−) · ‖f‖E(M).

Now let ∆(φ) be a minimal closed disk containing the support of φ and let d = d(φ) be
the diameter of ∆(φ).

Let g = (∂̄φ) · f , and observe that g has support in ∆(φ). We wish to estimate the
sup norm of Dk(Cg).

For w ∈ C we have

|Cg(w)| ≤ ‖g‖C ·
∫

∆(φ)

dxdy

|x+ iy − w|
.

It is not hard to see that the rhs is maximized when w is the centre of ∆(φ), so we obtain

‖Cg‖C ≤ 2d · ‖g‖C,

and since
Dk (Cg) = C(Dkg),
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we obtain ∥∥Dk(Cg)
∥∥C ≤ 2d · ‖Dkg‖C,

so ∥∥C((∂̄φ) · f)
∥∥

E(M)
≤ 2d ·

∥∥(∂̄φ) · f
∥∥

E(M)

≤ 2d · κ · ‖φ‖E(2,M−) · ‖f‖E(M).

Putting it all together, we obtain

‖Tφf‖E(M) ≤
{
‖φ‖E(M) + 2d · κ · ‖φ‖E(2,M−)

}
‖f‖E(M)

≤ (1 + 2κd) · ‖φ‖E(2,M−) · ‖f‖E(M).

This proves the lemma.

Proof of Theorem 3.4. Suppose that M , K and f are as in the statement. For each
a ∈ K there exists a compact neighbourhoodN of a and a point b ∈ N such that (N∩K)−b
is radially self–absorbing. We can cover K by a finite number of such neighbourhoods,
N1, . . ., Np, and select functions φ1, . . ., φp such that each φj belongs to E(2,M−), has
compact support contained in intNj , and

∑
φj = 1 on a neighbourhood of K. Setting

fj = Tφjf and g = f −
∑
fj , we then find that fj is analytic on intK and off sptφj , and

g is analytic on a neighbourhood of K. By the Lemma, each fj belongs to E(2,M), and
hence so does g.

Thus it remains to see that each fj may be approximated in E(2,M) norm by functions
that are holomorphic on a neighbourhood of K. This is readily done by using the dilation
method of the proof of Lemma 3.1. The only point to check is that the dilates by factors
slightly greater than 1 remain holomorphic on a neighbourhood of K, and not just K∩Nj .
The fj are holomorphic off sptφj ∼ intK, and this is a compact set contained in intNj . Its
intersection with K is contained in K ∩ intNj . Thus slight dilation from a suitable point
in Nj ∩ intK will force the singular support of fj to miss K.

Remarks.
1. We note that the restriction to K of the sequence Fn of the statement will converge

in D(K,M) norm to f , and that it follows that f lies in the closure of the rational functions
in D(K,M). If X is polynomially–convex, f then lies in the closure of the polynomials in
D(K,M).

2. It is possible that, for every perfect compact set K and every sequence M that a
dense subset of elements of D(K,M) extend to the appropriate E(2,M) space. In this
case, the above will give us rational approximation results for all K and appropriate M .
Little was known about extensions of this type. We shall address the problem of extensions
from D(K,M) in the next section, and consider extensions from a dense subset in section
5.

3. The result applies to all compact sets with dense interior and merely piecewise–
smooth boundary, provided the boundary is free of cusps. Certain kinds of cusps can be
accommodated, but there are examples both of inward and outward cusps which cause the
hypotheses to fail.
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4. Extensions in one dimension.

(4.1) In this section we suppose that K is a perfect compact subset of R and that 0 ∈ K.
Let T j

y g denote the j–th order Taylor polynomial of g about y. This has nothing to
do with the Tφ operator.

The space W (K, r,M) is defined to be the subset of D(K, r,M) consisting of those
functions f such that the seminorm

‖f‖′K,M =

sup
n≥0

 1
Mn+1

· sup
j≥0

(n− j + 1)!

∥∥∥∥∥ |Djf(x)− ((Tn−j
y )Djf)(y)|

|x− y|n−j+1

∥∥∥∥∥
K×K∼diagonal


< +∞.

We give this space the norm obtained by adding the above seminorm to the D(K, r,M)
norm. It is clear from Taylor’s theorem that restrictions to K of elements of E(1, r,M)
always belong to W (K, r,M). Unlike D(K, r,M), the space W (K, r,M) is complete for
all compact perfect K.

In considering extensions from D(K, r,M), it is natural to look at the following chain:

E(1, r,M) →W (K, r,M) → D(K, r,M) → lr(M−1).

Here the first map is restriction to K, the second is an inclusion map, and the third is
the map of a function to the sequence of its derivatives at 0. The composition of all the
maps is ρr. We are focussing on the composition of the first two maps, and the relation
between its image, D2(K, r,M) = E(1, r,M) ∩D(K, r,M) and D(K, r,M). (Recall that
D1(K, r,M) = C∞(R) ∩D(K, r,M), so that

D2(K, r,M) ⊂ D1(K, r,M) ⊂ D(K, r,M).

We begin by showing that ρr need not be surjective.

4.1 Theorem. Suppose that M satisfies the following condition:

sup
k

inf
n

Mn−1

Mn
·
(
Mn+k

Mn

) 1
k

< +∞.

Let 1 ≤ r ≤ ∞. Then the restriction map ρr : E(1, r,M) → lr(M−1) is not onto.

Remark. The conditions of the theorem are satisfied by the Gevrey sequences (n!)α for
all α. To see this, we observe that

inf
n

1
nα

((n+ 1)α · · · (n+ k)α)
1
k

= inf
n

((
1 +

1
n

)
· · ·
(

1 +
k

n

))α
k

≤ inf
n

exp
(

1
2 (k + 1)α

n

)
= 1.
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Proof of Theorem. Choose B > 1 such that

sup
k

inf
n

Mn−1

Mn
·
(
Mn+k

Mn

) 1
k

< B.

Suppose, for a contradiction, that ρr is onto. By the open mapping theorem, there exists
C > 1 such that, for each α = (αn) ∈ lr(M−1

n ) there exists f ∈ E(1, r,M) with ‖f‖ ≤ C‖α‖
and such that f (n)(0) = αn for n ≥ 0.

Now set A = 4BC. Choose k ∈ N such that
(AB)k−1

(k − 1)!
<

1
A2

.

Choose n ∈ N such that
Mn−1

Mn

(
Mn+k

Mn

) 1
k

< B,

and so

Mn+k < Bk

(
Mn

Mn−1

)k

·Mn.

By our assumption, there exists f ∈ D(r,M) with ‖f‖ ≤ C and such that f (t)(0) = Mnδt,n
for all t. For this f , we have the trivial estimate ‖f (n+k)‖R ≤ CMn+k. Applying Taylor’s
theorem to the function f (n+1), and using the above, we find that, for x ∈ [0, AMn−1/Mn],
we have

|f (n+1)(x)| ≤ 1
(k − 1)!

(
AMn−1

Mn

)k−1

‖f (n+k)‖Rd

≤ 1
(k − 1)!

(
AMn−1

Mn

)k−1

CMn+k

≤ C

(k − 1)!

(
AMn−1

Mn

)k−1

Bk

(
Mn

Mn−1

)k

Mn

≤ BC

A2

M2
n

Mn−1
=

M2
n

4AMn−1
.

Since f (n)(0) = Mn it follows that, for all x ∈ [0, AMn−1/Mn],

f (n)(x) ≥Mn −
M2

n

4AMn−1
· AMn−1

Mn
=

3
4
Mn

and hence

f (n−1)

(
AMn−1

Mn

)
≥ AMn−1

Mn

3
4
Mn

=
3
4
AMn−1 > CMn−1,

and this contradicts our choice of f , proving the result.

(4.2) Next we show that ρ1 may be surjective.
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4.2 Theorem. There exists a sequence M for which every element of l1(M−1
n ) has an

extension in E(1,M).

Proof. It is enough to show that for M that grow sufficiently rapidly, each element of
l1(M−1) has an extension in D(I,M). This is because we may then multiply by a test
function that is identically 1 near 0 and has support in I, and get an extension to R. As
long as M is an algebra sequence and grows rapidly enough to be nonquasianalytic, the
test function may be chosen in E(1,M), and hence the extension also belongs to E(1,M).

Because of the nature of the space l1 it is enough to find a sequence M , a constant
C and a sequence of functions (fn)∞n=0 such that each fn is in D(I,M), ‖fn‖ ≤ C, and
f

(t)
n (0) = Mnδt,n for all t, n. We shall achieve this with constant C = 3 by making an

inductive choice of the positive number Mn and the infinitely differentiable function fn on
I.

We begin by setting M0=1, and take for f0 the constant function 1. Having chosen
Mj and fj for j < n, we choose Mn large enough so that, for j < n, ‖f (n)

j ‖I < 2−nMn,
and such that Mn ≥

(
n
k

)
Mn−kMk for all k < n. Now choose an infinitely differentiable

function fn such that ‖f (n)
n ‖I = Mn, f (t)

n (0) = Mnδt,n for all t, and such that, for j < n,
‖f (j)

n ‖I ≤ 2−jMj . This can be done easily by making the support of f (n)
n narrow enough,

since we are working only on the interval I. The inductive choice may now proceed.
It remains to show that each fn is in D(I,M), with norm at most 3. For j = n we

have ‖f (j)
n ‖I = Mj , while, for all other j,

‖f (j)
n ‖I ≤ 2−jMj .

Thus
∞∑

j=0

(M−1
j ‖f (j)

n ‖I) < 3,

which completes the proof.

Remarks
1. The nature of the space l1 gives us a continuous, linear extension operator. The

above argument gives an extension operator of norm at most 3, but we can arrange for the
norm to be as close to 1 as we like.

2. One particular sequence Mn for which ρ1 is onto is the sequence 22n

. To modify the
above argument to show this, we first note that there is a function φ ∈ E(1,∞, (n!)2) whose
support is in I and such that φ(n)(0) = δ0,n. Let A be the norm of φ in E(1,∞, (n!)2).
Now, for ε ∈ (0, 1) and a non-negative integer k, we can consider the function ψk,ε in
D(I, (n!)2) obtained by integrating the function φ(x/ε) k times, i.e. ψ(n)

k,ε (0) = δk,n for all

n, and ψ(k)
k,ε (x) = φ(x/ε). For this crude choice of function, we have the following estimates

for the derivatives. For n < k,
‖ψ(n)

k,ε ‖I ≤ Aε.

12



For n ≥ k we have

‖ψ(n)
k,ε ‖I ≤ A

((n− k)!)2

εn−k
.

Now, set εk = M−1
k = 2−2k

, and set fk = Mkψk,εk
. We have f (n)

k (0) = Mkδk,n. For n < k
we have

‖f (n)
k ‖I ≤ A.

For n ≥ k we have
‖f (n)

k ‖I ≤ AM
(n−k+1)
k (n− k)!2.

It follows that fk ∈ D(I,M) and that the norms of the functions fk are bounded, as
required.

(4.3)Consider compact sets K of the form

K = {0} ∪
∞⋃

n=0

[an, bn]

where (an), (bn) are sequences of positive numbers satisfying

bn > an > bn+1

and
lim

n→∞
an = lim

n→∞
bn = 0.

We call these kind of sets simple sets. We shall denote the interval [an, bn] by In.

4.3 Theorem. For any sequence M there is a compact simple set K and a function f on
K such that f ∈ D1(K, 1,M), but f does not belong to W (K,∞,M), and hence f has
no extension in E(1,∞,M). Thus f belongs to each D1(K, r,M) but has no extension in
any E(1, r,M).

Proof. In fact, we show that for suitable sequences (an) and (bn) the function f can be
chosen to be constant on each interval In, with value cn, say, and with f(0) = 0. For such
a function to be infinitely differentiable on K it is necessary and sufficient that

lim
n→∞

cn
an

= 0.

All derivatives of positive order of f on K are then 0, and so f ∈ D(K, r,M) for all
r ≥ 1. By Whitney’s theorem, for such a function f to have an extension in C∞(Rd) it is
necessary and sufficient that, for all k,

|f(x)− f(y)| = o(|x− y|)k

on K.

13



Now let (An)∞n=0 be a strictly increasing sequence of positive real numbers to be
determined later, such that

∑
A−1

n converges. Set

bn = 2
∞∑

k=n

1
Ak

,

an =
1
An

+ 2
∞∑

k=n+1

1
Ak

(the precise width of the intervals is not critical, but the distance between consecutive
intervals is). Set

cn = (−1)nA−n/2
n .

The function f obtained then satisfies the above conditions, because, for x ∈ In,

|f(x)− f(0)| ≤ |x− 0|n/2,

while for x ∈ Im, y ∈ In we have

|f(x)− f(y)| ≤ |x− y|m/2 + |x− y|n/2.

Thus f is in D1(K, r,M) for all r ≥ 1. To show that, for suitable choice of An, f does not
belong to W (K,∞,M), observe that

|f(an)− Tn−1
bn+1

f(an)| = |cn − cn+1|,

so
‖f‖′K,M ≥Mn

−1n!(an − bn+1)−n|cn − cn+1|

≥Mn
−1n!A

n
2
n .

There is no difficulty in choosing An to satisfy the above conditions and also such that
n!An/2

n /Mn is unbounded, and so the result follows.

In particular, even for the sequence 22n

and this relatively simple class of compact
set, functions in D1(K, 1,M) may not have extensions in the appropriate class.

(4.4)Next, we show that for any sequence M it is possible to extend from a point to some
perfect set containing the point.

4.4 Theorem. For each sequence M there is a simple compact set K and a continuous
linear operator S : l1(M−1

n ) −→ D(K,M) satisfying

(S(α))(n)(0) = αn.

Proof. Note that the space D(K,M) will be incomplete, so that we must proceed with
caution. We shall choose sequences an, bn, with bn decreasing, and then define S by

S(α)(0) = α0

14



S(α)|In =
n∑

k=0

αk

k!
xk,

so that S(α) is the appropriate Taylor polynomial of degree n on the interval In. With
this definition, S(α) will be infinitely differentiable on K and (S(α))(n))(0) = αn provided
that, for all n,

lim
m→∞

∥∥∥∥∥ 1
x

((
m−n∑
k=0

αn+k

k!
xk

)
− αn − αn+1x

)∥∥∥∥∥
Im

= 0.

For this, it is sufficient that, for all n,

lim
m→∞

m−n∑
k=2

∣∣∣αn+k

k!

∣∣∣ bk−1
m = 0.

This will be satisfied for all α in l1(M−1
n ) if the sequence bn is such that bn+1 ≤ bn and

bn ≤ min
{

1
(n+ 1)

,min
{

M−1
k

(n+ 1)
: 1 ≤ k ≤ n

}}
,

which is a modest requirement. Now let α ∈ l1(M−1
n ) and set f = S(α). We estimate the

norm of f . On the interval Im we have f (n) = 0 for all n > m, and, for n ≤ m,

|f (n)(x)| ≤ |αn|+

∣∣∣∣∣
m−n∑
k=1

αn+k

k!
xk

∣∣∣∣∣
≤ |αn|+

m−n∑
k=1

|αn+k|bkn+k.

Thus, if bn has the above properties, and in addition satisfies bn+k ≤ 2−nM−1
n+kMn for all

n, k, then
‖f (n)‖K ≤ |αn|+ 2−nMn‖α‖

and so f ∈ D(K,M), and

‖f‖ ≤ ‖α‖(1 +
∞∑

n=0

2−n) = 3‖α‖.

This proves the result, because we may easily choose a strictly decreasing sequence bn with
these properties and such that bn → 0. We may then choose any value for an between
bn+1 and bn.
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5. More approximation results in one and two dimensions.

(5.1) The results so far show that there is in general no way forward based on the use
of an extension operator globally–defined on D(K,M), although such an operator may
exist in some cases. We proceed now to use densely–defined extension operators. For the
application to approximation by rational functions and polynomials, these operators are
just as good. We show that they exist at least in the totally-disconnected case and in the
one–dimensional case.

We suppose throughout this section that M is a nonanalytic algebra sequence.
It is worth noting that even when D(K,M) is incomplete, it is still true that if

fn is a Cauchy sequence in D(K,M) and g is an infinitely differentiable function on a
neighbourhood of K such that f (k)

n tends to g(k) uniformly on K for all k, then g is in
D(K,M) and fn converges to g in D(K,M).

We begin with some general remarks about polynomial and rational approximation
in the case when D(K,M) is not necessarily complete.

The function ra : z 7→ 1/(z − a) belongs to D(K,M) whenever a 6∈ K, because its
derivatives are controlled by k! · dist(z,K)−k. The map a 7→ ra is a continuous function
from C ∼ K into D(K,M).

Lemma 5.1. The set of those a ∈ C for which ra belongs to the closure of the polynomials
in D(K,M) is precisely the unbounded component of C ∼ K.

Proof. This proof uses what is known as the usual Runge argument. We include it here
for the convenience of the reader, and the comfort of those who are used to seeing it in the
context of complete spaces. It does not depend on completeness of D(K,M).

If a sequence {fn} converges in D(K,M) norm, then it converges uniformly on K.
Thus ra is certainly not the D(K,M)–norm limit of a sequence of analytic polynomials
unless a belongs to the unbounded component Ω of C ∼ K. It remains to see that ra is
such a limit if a does belong to Ω.

Let P denote the closure of C[z] in D(K,M).
Fix a ∈ Ω. When |b| is large enough, the power series

rb(z) = −
∞∑

n=0

zn

bn+1

converges in D(K,M) norm, so rb ∈ P . Pick such a b, and choose a curve γ : [0, 1] → Ω
such that γ(0) = a and γ(1) = b. Let E denote the set of t ∈ [0, 1] such that rγ(t) ∈ P .
Then 1 ∈ E, so E is nonempty. Evidently, E is closed. We claim that E is also open. This
is a consequence of the fact that the set

{c ∈ C : rc ∈ P}

is open, and this follows from the D(K,M)–norm–convergent series representation

rd =
∞∑

n=0

(d− c)nrn+1
c ,
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which holds whenever |d− c| is smaller than 1/‖rc‖D(K,M). By the connectivity of [0, 1] it
follows that E = [0, 1], hence 0 ∈ E, hence ra ∈ P .

It follows easily that each rational function having poles off K is a limit of polynomials
in D(K,M) if and only if C ∼ K is connected.

If f is a function defined and holomorphic on some neighbourhood of K, then the
restriction f |K may be represented by a contour integral on a smooth contour lying in this
neighbourhood and outside K. The Cauchy integral formulas for the derivatives imply
that |f (k)| is bounded on K by Ld−k−1k!/2π, where L is the length of the contour and d
is the least distance from the contour to K. Thus f ∈ D(K,M), since M is non–analytic.
The continuity of the map a 7→ ra implies that f may be approximated in D(K,M) norm
by (finite) Riemann sums of the form

∑
j λjraj

, with λj ∈ C. Thus f is a limit of rational
functions in D(K,M) norm.

We employ the usual notation C[z] for the space of analytic polynomials, and C(z)
for the ring of quotients. We regard both as function spaces.

Theorem 5.2. Suppose that K ⊂ C is compact, perfect and totally–disconnected. Let
M be a non–analytic algebra sequence. Then C[z] is a dense subset of D(K,M).

The proof depends on the following lemma. Before stating it, we recall that a set
K has dimension zero at a point a (abbreviated dimaK = 0) if each neighbourhood of a
contains a neighbourhood whose boundary is disjoint from K.

Lemma 5.3. Let K ⊂ C be compact and perfect and let M be any non–analytic algebra
sequence. Let f ∈ D(K,M) and let ε > 0. Then there exists N ∈ N such that, whenever
a ∈ K satisfies dimaK = 0, then there exists g ∈ C[z] with degree at most N and a closed
neighbourhood U of a having K ∩ bdyU = ∅, such that

|(f − g)(k)(x)|
Mk

≤ ε

2k+1
, ∀x ∈ U ∩K, ∀k ≤ N,

and ∑
k>N

‖f (k)‖K

Mk
<
ε

2
.

Proof. Pick N ∈ N such that
∞∑

N+1

‖f (k)‖K

Mk
< ε/2.

Let g be the N -th order Taylor polynomial of f about a. Observe that g is an analytic
polynomial, hence g|K ∈ D(K,M).

Pick r > 0 such that |x− a| < r and x ∈ K imply that

|(f − g)(k)(x)|
Mk

≤ ε

2k+1
, ∀k ≤ N.

Pick a neighbourhood U of a such that U is contained in the ball of radius r about a and
K∩bdyU = ∅. This is possible since the dimension of K at a is zero.
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Proof of Theorem. Fix f ∈ D(K,M) and ε > 0. Choose N as in Lemma 5.3.
By compactness, we may choose points a1, . . . , an in K and open neighbourhoods U1,

. . ., Un of these points (respectively) and polynomials g1, . . ., gn ∈ C[z], such that K is
covered by the Uj ’s, K∩bdyUj = ∅,

|(f − gj)(k)|
Mk

≤ ε

2k+1
on Uj ∩K, ∀k ≤ N,

and ∑
k>N

‖f (k)‖K

Mk
<
ε

2
.

By removing parts of some Uj , if need be, we may ensure that the Uj are pairwise–
disjoint, without affecting the above properties. Define g on

⋃
j Uj by setting g|Uj =

gj . Then g is holomorphic on a neighbourhood of K, and hence is a D(K,M) limit of
polynomials.

For k ≤ N , ∥∥(f − g)(k)
∥∥

K

Mk
= max

j

‖(f − g)(k)‖K∩Uj

Mk

≤ ε

2k+2
.

For k > N ,
‖(f − g)(k)‖K

Mk
=
‖f (k)‖K

Mk
.

Thus
∞∑

k=0

‖(f − g)(k)‖K

Mk

≤
∑
k≤N

ε

2k+2
+
∑
k>N

‖f (k)‖K

Mk

≤
∞∑

k=0

ε

2k+2
+
∑
k>N

‖f (k)‖K

Mk
< ε.

Remark. Note that under the hypotheses of the theorem, this proof shows that E(1,M)∩
D(K,M) is dense in D(K,M), provided M is non–quasianalytic.

In one dimension, we can deal with general compact sets by using a variation of the
same idea. The components of a one–dimensional compact set are either points or closed
intervals of positive length. Point components can be handled using Lemma 5.3. The
following lemma covers the other case.
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Lemma 5.4. Let M be a non–analytic algebra sequence. Let K be a compact perfect
subset of R. Let a ∈ K and let the connected component of a in K be be a closed interval
J of positive length. Let f ∈ D(K,M) and ε > 0. Then there exist N ∈ N, an open
interval U containing J , and a function g ∈ D(closU,M), such that K∩bdyU = ∅,

∑
k>N

‖f (k)‖K

Mk
<
ε

4
,

‖g(k)‖K∩U ≤ ‖f (k)‖K , ∀k,

and
‖g(k) − f (k)‖K∩U

Mk
≤ ε

2k+2
, ∀k ≤ N.

Proof. Let m be the midpoint of J . Without loss of generality we may take m = 0.
Pick N ∈ N such that ∑

k>N

‖f (k)‖K

Mk
< ε/4.

Define
gα(x) = f(x/α), ∀x ∈ αJ, ∀α > 1.

We have
g(k)

α (x) = α−kf (k)(x/α), ∀x ∈ αJ,

so
‖g(k)

α ‖αJ ≤ ‖f (k)‖J

for each k. Now for each k, g(k)
α → f (k) uniformly on J , so we may choose α > 1 such that

‖g(k)
α − f (k)‖J <

εMk

2k+2
,

for each k ≤ N . By continuity of f (k) on K, we may then choose an open interval U
containing J and contained in αJ , such that the boundary of U does not meet K and

‖g(k)
α − f (k)‖U∩K <

εMk

2k+2
,

for each k ≤ N . Taking g = gα, we are done.

Theorem 5.5. Suppose K ⊂ R is compact and perfect and M is a non–analytic algebra
sequence. Then the analytic polynomials are dense in D(K,M).

Proof. Fix f ∈ D(K,M) and ε > 0.
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For each a ∈ K, we may apply either Lemma 5.3 or Lemma 5.4 to obtain an open inter-
val Ua, containing the connected component of a in K, and a function ga ∈ D(closUa,M),
and a number Na ∈ N, such that K ∩ bdyUa is empty,

∑
k>Na

‖f (k)‖K

Mk
<
ε

4
,

‖g(k)
a ‖K∩Ua

≤ ‖f (k)‖K , ∀k > Na,

and
‖g(k)

a − f (k)‖K∩Ua

Mk
≤ ε

2k+2
, ∀k ≤ Na.

By compactness we may select a1, . . . , an such that K ⊂
⋃
Uaj . Removing parts of

some Uaj , if need be, we may assume that the closUj are pairwise–disjoint. We abbreviate
Kj = closUj , and we set L = minj Naj .

By the polynomial approximation theorem for intervals [O1], we may choose polyno-
mials hj ∈ C[z] with

‖gj − hj‖D(Kj ,M) <
ε

4n
.

Define
g(x) = gj(x), ∀x ∈ Kj and

h(x+ iy) = hj(x+ iy), ∀x ∈ Kj , ∀y ∈ R.

Then h is holomorphic on a neighbourhood of K and

‖g − f‖D(K,M) ≤
∑
k≤L

‖g(k) − f (k)‖K

Mk
+
∑
k>L

‖g(k)‖K

Mk
+
∑
k>L

‖f (k)‖K

Mk

≤
∑
k≤L

ε

2k+2
+ 2

∑
k>L

‖f (k)‖K

Mk

≤ 3ε
4
.

‖h− f‖D(K,M) ≤ ‖h− g‖D(K,M) + ‖g − f‖D(K,M)

≤
n∑

j=1

‖hj − gj‖D(Kj ,M) + ‖g − f‖D(K,M)

≤ n · ε
4n

+
3ε
4

= ε.

This method can be used to deal with finite disjoint unions of the types of set so far
dealt with. We formalise this remark:
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Theorem 5.6. Let M be a nonanalytic algebra sequence. Suppose that K is a compact
perfect subset of C, and that K is a finite disjoint union of compact subsets Ln each of
which is either totally disconnected, or a subset of a straight line segment, or a translate
of a radially–self–absorbing set. Then C[z] is dense in D(K,M).

Proof. Observe that the complement of K is necessarily connected, so all we have to show
is that the space of functions holomorphic on a neighbourhood of K is dense in D(K,M).

Let f ∈ D(K,M) and ε > 0. For each of the compact subsets Ln we may use
either Corollary 3.2, Theorem 5.2 or Theorem 5.5 to obtain a polynomial gn such that the
D(Ln,M) norm of f −gn is less than ε

2n . We may also choose open sets Un whose closures
are disjoint such that Ln ⊆ Un, and the closure of Un misses K ∼ Ln. Now define g on the
union of the open sets Un such that the restriction of g to Un is gn. Then g is holomorphic
on a neighbourhood of K, and, adding our estimates for the norms of f − gn, we see that
the D(K,M) norm of f − g is less than ε. The result follows.
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