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1. Introduction.

Ever since the famous thesis of Frostman, capacities have been important in many
areas of function theory. In this talk I shall be concerned only with one–variable
function theory on arbitrary open subsets of the complex plane, C. It is important
to stress that the open sets need not be connected. I will discuss the use of ana-
lytic capacities in connection with problems of removable singularities, holomorphic
approximation, and boundary smoothness.

A brief reference to the applications is in order. The connections between an-
alytic (and harmonic) functions and the physics of perfect fluids, electrostatics,
magnetostatics, classical gravitation and heat are well–known. Much of what I shall
say about analytic functions (solutions of the d–bar equation) applies also to solu-
tions of other elliptic equations, and so there are other applications, for instance to
elasticity (connected to the bi-Laplacian and the d-bar-squared operator). It should
also be noted that students of capacitary problems were among the first to discover
and examine many of the weird–looking sets formerly regarded as pathological by
most people, but now known as fractals and accepted as natural objects of study
for many applications.

Here is a brief outline of the talk. Let U be an open subset of C, and F ⊂
D′(C,C) be a topological vector space of distributions (generalised functions) on
C. We define

AF (U) = {f ∈ F : ∂̄f = 0 on U}.

In other words, AF (U) consists of those distributions f ∈ F that are analytic on
U . Typically, the space F is supposed to be characterised by some real–variable
property, such as boundedness, continuity, etc. One expects that the functions
f ∈ AF (U) are in some respects nicer than typical elements of F . To the space F ,
we shall associate an analytic capacity

∂̄ − F − cap : 2C → [0,+∞].

The definition of ∂̄–F–cap will be given presently, but for now it is enough to note
that it is a monotone nonnegative set function. The main idea of analytic capacity
theory is that it is possible to recover many local properties of the spaces AF (U)
from a knowledge of the ∂̄–F capacity. Consider the following problems.
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Removability:

A compact K ⊂ C is said to be ∂̄–F–null if

AF (U ∼ K) = AF (U), ∀ open U ⊂ C.

The removability question is to characterise the ∂̄–F–null sets in some explicit way.

Approximation:

For which compact sets X ⊂ C is

⋃
{AF (U) : X ⊂ U,U open}

dense in AF (U) in the topology of F?

Boundary smoothness:

For which open U ⊂ C, a ∈ bdyU , and nonnegative integers k, is the map

f 7→ f (k)(Q)

reasonably well–defined on AF (U)?
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2. Example: lipα.

To appreciate these problems, it is useful to look at an example. Consider the case
F =lipα.

Let 0 < α ≤ 1.

Definition. f ∈ Lipα means f : C → C and

|f(z)− f(w)| ≤ κ|z − w|α ∀z, w ∈ C

for some constant κ, independent of z and w.
Lipα becomes a Banach space when given the norm

‖f‖Lipα = |f(0)|+ least κ.

The subspace of Lipα consisting of those f such that

lim
|z−w|↓0

|f(z)− f(w)|
|z − w|α

= 0

and

lim
|z−w|↑∞

|f(z)− f(w)|
|z − w|α

= 0

is a closed subspace, the closure of the space D of test functions. We denote it lipα.
The ∂̄–Lipα–cap turned out to be equivalent to (1 + α)–dimensional Hausdorff

content, M1+α (Dolzhenko, 1964). The Hausdorff content corresponding to a non-
negative increasing function h on [0,∞) is defined by

Mh(E) = inf
S

∑
B∈S

h(diamB), ∀E ⊂ C,

where S runs over all countable coverings of E. The ∂̄–lipα–cap is equivalent to
(1 + α)–dimensional lower Hausdorff content, M1+α

∗ . This content is defined by

Mβ
∗ (E) = sup

{
Mh(E) : h(r) ≤ rβ , r−βh(r) → 0 as r ↓ 0

}
.

The solutions to the three problems for lipα are as follows (Similar results hold
for Lipα, but the statements are less straightforward, because in that case reference
must be made to the weak–star topology on Lipα).
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Theorem 1 (Dolzhenko). Let K ⊂ C be compact. Then K is ∂̄–lipα–null if and

only if

M1+α
∗ (K) = 0.

Theorem 2. Let X be a compact subset of C. Then⋃
{Alipα(V ) : V is a neighbourhood of X}

is dense in Alipα(intX) if and only if

M1+α
∗ (D ∼ X) ≥ const ·M1+α

∗ (D ∼ intX), ∀ discs D ⊂ C.

In fact, in this statement, one may replace the M1+α
∗ (D ∼ X) on the left–hand

side by M1+α(D ∼ X). The statement as given serves to emphasise the fact that
the problem may be solved using only the capacity M1+α

∗ .
To understand the statement intuitively, observe that the approximation problem

involves the approximation of functions whose singularities lie in C ∼ intX by
functions whose singularities lie in the smaller set C ∼ X. It is a question of
“pushing” singularities off bdyX into the complement of X. The capacity ∂̄–lipα–
cap (∼M1+α

∗ ) measures, in fact, the capacity to carry singularities of lipα analytic
functions. Also, the problem is local. So it is reasonable that the solution should
involve the comparison of the capacity of D ∼ X and D ∼ intX for all disks D.
Naturally, it is not important that disks are used; squares, or arbitrary open sets
would do just as well.

The first theorem of this type for analytic functions was for continuous functions
and uniform approximation, and was proved by Vitushkin. Earlier, Keldysh proved
the corresponding result for harmonic functions and uniform approximation.

Lemma 1. Let U ⊂ C be open and a ∈ C. Then the set of all f ∈ Alipα(U)
that are analytic on a neighbourhood of a (depending on f) is a dense subset of

Alipα(U).

The uniform approximation version of this lemma was first discovered by Arens.
This lemma enables us to state more precisely the boundary smoothness question

for ∂̄–lipα. It is: to characterise those U , a, and k ∈ N such that the functional
f 7→ f (k)(a), defined on

{f ∈ Alipα(U) : f is analytic near a}

extends continuously to all of Alipα(U). When such a continuous extension (nec-
essarily unique) exists, we say that Alipα(U) admits a k–th order continuous point
derivation at a.
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Only points a that lie on the boundary of U are of interest, because Alipα(U)
admits continuous point derivations of all orders at points of U , and of no order
k ≥ 1 at points outside closU .

Theorem 3. Let U ⊂ C be open, a ∈ C, and k ∈ N. Then Alipα(U) admits a

k–th order continuous point derivation at a if and only if

∞∑
n=1

2(k+1)nM1+α
∗ (An ∼ U) < +∞.

Here An denotes the annulus

An =
{
z ∈ C :

1
2n+1

< |z − a| ≤ 1
2n

}
.

3. Symmetric Concrete Spaces.

A Symmetric Concrete Space (SCS) on Rd is a complete LCTVS, F , such that

1. D↪→F ↪→D′,

2. f 7→ f̄ maps F → F continuously,

3.

{
D× F → F

(φ, f) 7→ φf

}

makes F a topological D–module.

4. for each T ∈Aff,

cT :

{
F → F

f 7→ f ◦ T

}
is continuous

and T 7→ cT maps compact subsets of Aff to equicontinuous subsets of End(F ).

If an SCS is normable, we call it a symmetric concrete Banach space (SCBS).
An SCS is called small if D is sequentially dense in it.
As examples, Lp, Ck, Lipα, lipα, BMO, VMO, Sobolev spaces, Besov spaces,

Bloch space, Zygmund class (ZC) and Zygmund smooth class (ZS) are SCS. The
space Lp is small if p < +∞. Other small spaces are Ck, lipα, VMO, and ZS loc.

I now give a brief account of basic SCS theory.
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Let F be an SCS. To a closed subset X ⊂ Rd, we associate spaces F (X) —
germs on X, FX — elements of F that are supported on X, and

F loc = E · F ; F cs = D · F.

The spaces F loc and F cs inherit natural topologies which make them into SCS’s.
The most useful equivalence relation on SCS is local equivalence, defined by

F1
loc=F2 ⇔ F1loc = F2loc.

The notion of local inclusion, defined by

F1
loc
↪→F2 ⇔ F1loc ⊂ F2loc

gives a partial order on the local equivalence classes. It turns out that for SCS,
F1 ⊂ F2 is equivalent to F1↪→F2, so that

F1
loc
↪→F2 ⇔ F1loc↪→F2loc.

The usefulness of this notion is illustrated by the Lp spaces. One never has Lp↪→Lq

if p 6= q, but Lp loc
↪→Lq if and only if p ≥ q, so

loc
↪→ gives a linear order on the Lp spaces.

In general,
loc
↪→ is not a total order on the SCS. For instance, in two dimensions, the

space C = C0 of continuous functions and the Sobolev space W 1,2 are unrelated by
loc
↪→

The following “F∞ construction” is useful:
The space F∞ associated to an SCS, F , is the set of all those f ∈ F loc such that

f(·+ a)|B(0, 1) → 0

in F (B(0, 1))–topology as a→∞. This construction produces a new SCS, locally–
equivalent to the original. It may be larger or smaller than the original. For instance,
C0
∞ is the space, often denoted C0, of continuous functions that tend to zero at

infinity, and is smaller than C0, whereas L2
∞ is the space of measurable functions

that have ∫
B(a,1)

|f |2dx→ 0

as a → ∞, and is larger than L2. The space F∞ has some canonical properties.
For instance, if there is an SCBS in the local equivalence class of F , then F∞ is
normable.
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For any SCS, F , there is a canonical map i : F ∗ → D′, the adjoint of the inclusion
map D↪→F . This map is injective if and only if D is dense in F , and then i(F ∗) is an
SCS, a canonical SCS realisation of F ∗. Similarly, if F is a dual space, then there is
a canonical SCS realisation of the predual F∗ if and only if D is weak–star dense in
F ; in that case, the canonical predual is just the canonical dual of (F, weak–star).

There is a duality between restriction spaces and support spaces, given by

F (X)∗ = (F ∗)X , (FX)∗ = F ∗(X),

for all F ∈SCS and all closed X ⊂ Rd.

If F1 and F2 are SCS, then so are the intersection F1∩F2 and the sum F1+F2 (—
the inner vector space sum in D′), when endowed with the obvious topologies. The
only point that requires a little care in the proof is the completeness of these spaces.
A corollary is the fact, quoted above, that inclusion inplies continuous inclusion, for
SCS.

I conclude this brief summary of the basic properties of SCS with an important
observation about the action of convolution. The convolution f ∗ g makes sense
when f is a distribution having compact support and g is any distribution. Thus
we may consider it for f ∈ F cs and g ∈ L1

loc.

Theorem 4. Suppose (a) F is a small SCS, or (b) F is the SCS dual of a small

SCS. Then the map

(f, g) 7→ f ∗ g

maps

F cs × L1
loc → F loc

continuously.

The conditions given on F may be relaxed, but those given cover all spaces of
interest to me.

To indicate the proof, one may begin by remarking that the case (b) may be
reduced to case (a). The difficult thing is to demonstrate that convolution maps

F cs × L1
loc → F loc;

once this is known, continuity is not a problem. Thus part (b) is obtained by
applying part (a) to the SCS (F, weak–star).
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To prove the result on hypothesis (a), fix f ∈ F cs and g ∈ L1
loc. Then f ∗ g is

defined, as an element of D′, by the usual formula:

〈ψ, f ∗ g〉 = 〈〈ψ(x+ y), fx〉, gy〉, ∀ψ ∈ D. (∗).

The first step is to extend the domain of f ∗g from D to (F loc)∗. It is straightforward
to check that (*) makes sense whenever we replace ψ by an element of (F loc)∗ =
(F ∗)cs, and defines an element f ∗ g of (F loc)∗∗.

The next step is to apply the Banach–Grothendieck Theorem to show that in
fact f ∗g lies in the image of F loc under the canonical injection of F loc into (F loc)∗∗.
According to that theorem, this amounts to showing that f ∗ g is uniformly contin-
uous on the polar of each neighbourhood of zero in F loc. Because of smallness, this
reduces to checking a simple sequential statement. ut

One might remark that the intuition behind this result is quite simple. Con-
volving a distribution with a locally–integrable function is a process of taking limits
of averages over translates of reflections (in 0) of the distribution. SCS are nicely
preserved under translation and reflection, and they are complete, so that it is rea-
sonable to suppose that they will be essentially preserved by convolutions.

Figure 1 presents a picture of part of the class of SCS. The arrows indicate the
local inclusion relations.

4. Analytic Capacities.

Now we define the analytic capacities associated to an SCS on the plane. For
simplicity, we restrict to the case where the SCS F is locally–equivalent to an SCBS.
In that case, F∞ may be normed. We assume this done, and (as is always possible)
that the norm on F∞ is translation–invariant.

Let K be a compact subset of C. Let φ ∈ D be a test function such that φ = 1
on a neighbourhood of K. We define the analytic–F– capacity

∂̄ − F − cap(K) = sup
{

1
π
|〈∂̄φ, f〉| : f ∈ Ball AF∞(C ∼ K)

}
.

This capacity is a nonnegative, monotone set function, which carries information
about the space F and the analytic functions. The quantity

1
π
〈∂̄φ, f〉

represents the coefficient a1 in the Laurent expansion

f = a0 +
a1

z
+ · · ·
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of f about ∞.
Given two set functions α and β on a family of subsets of C, we say that they

are locally equivalent if for each compact set X ⊂ C there is a constant κ > 0 such
that

1
κ
α(K) ≤ β(K) ≤ κα(K)

whenever K ⊂ X.
For application to the problems we have mentioned above, the precise values

of the capacities are not important: all that matters is the local equivalence class
of the appropriate capacity. Many of the interesting analytic capacities have been
explicitly identified up to local equivalence. Here is a brief summary of the main
results:

The L∞ capacity (the analytic capacity, in ordinary parlance) was the first to be
introduced (Ahlfors, 1947), and has at least four distinct descriptions.

The C analytic capacity generates the same outer capacity as the L∞ analytic
capacity, so both are as well (or as little) understood on sets with fat interior.
On sets with no interior, the two functions are in general quite different, and not
much is known about the C capacity. It is worth mentioning the remarkable result
of Browder–Wermer–Carleson–Garnett– Bishop–Jones that arcs with no tangents
have positive ∂̄–C–capacity.

The L2 analytic capacity is locally–equivalent to logarithmic capacity, which
is very well understood (Hedberg). It may be computed as a kernel capacity, a
Chebyshev constant, a transfinite diameter, a condenser capacity associated to the
Sobolev space W 1,2 (Dirichlet space).

For 2 < p < +∞, the Lp analytic capacity is equivalent to a condenser capacity,
an extremal length, and an iterated potential capacity. (Hedberg, Havin, Mazya,
Ziemer)

The C1 analytic capacity of a compact set is equivalent to the area of its interior.
(Nguyen, Hrushchev).

The Lipα capacity (0 < α < 1) is equivalent to the Haudorff content M1+α, and
the lipα capacity is equivalent to the corresponding lower contentM1+α

∗ . (Dolzhenko,
Gonchar, Mergelyan, Garnett, author).

The Lip1 capacity is equivalent to area (Nguyen, Hrushchev). The space lip1 is
not an SCS (too small).

The BMO capacity is equivalent to M1, and the VMO capacity is equivalent to
M1

∗ (Kaufman).
For p > 1, the W 1,p capacity is equivalent to |area|1/q, where q is the index

conjugate to p.
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The Ck capacity of a compact K is equivalent to∫
K

dist(z,C ∼ K)k−1dxdy.

A few interesting analytic capacities remain to be constructively identified, such
as the W 1,1, W 2,p, ZC and ZS capacities. Other interesting questions concern the
local affine invariance and quasisubadditivity of various capacities. Both questions
remain open for the Ahlfors capacity ∂̄–L∞–cap. Quasisubadditivity is not a nec-
essary property of analytic capacities in general (— for instance, it fails for the
lip(3/2) capacity), but no example is known of an SCS analytic capacity that is not
locally affine–invariant.

There is, naturally, no problem of removable singularities for spaces like C3: the
sets of removable singularities are exactly the sets with no interior. The capacity
associated to such a space is however of value is examining boundary smoothness.
For instance, at which points on the boundary do we have 4–th order bounded
point derivations on AC3(U)? This question requires quantitative estimates on the
thinness of the complement of U at boundary points.

5. Operators.

Now we consider operators that are associated to analytic function theory.

Definition. Let S be an operator defined on a set of distributions, with values in
the set of distributions.

We say that a topological vector space F ⊂ D′ is S–invariant if F lies in the
domain of S and S maps F into F , continuously (with respect to the topology of
F ). This is standard terminology, but we wish to introduce some more, useful when
F is an SCS.

We say that F is locally S–invariant if S : F → F loc, continuously.
We say that F is co–locally S–invariant if S : F cs → F , continuously.
We say that F is bi–locally S–invariant if S : F cs → F loc, continuously.

The important integral operators for function theory on general plane open sets
are:

1) The Cauchy transform:

C : f 7→ −1
πz

∗ f.

This inverts the ∂̄ operator:

∂̄Cf = f = C∂̄f, ∀f ∈ E′.
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2) The Beurling transform:

B : f 7→ PV
πz2

∗ f.

This has
∂Bf

∂z̄
=
∂f

∂z
∀f ∈ E′.

3) The Vitushkin localisation operator:

f 7→ Tφf =
−1
πz

∗
(
φ
∂f

∂z̄

)
,

defined for all f ∈ D′ and all φ ∈ D. This satisfies

∂̄Tφf = φ∂̄f,

and so may be used to localise singularities.
We make the convention that T–invariant means Tφ–invariant, for each φ ∈ D.

Theorem 5. Let F be a small SCS or the SCS dual of a small SCS. Then F is

locally T–invariant, and F∞ is T–invariant.

Proof. The function −1/πz belongs to L1
loc, so Theorem 4 shows that F is bilocally

C–invariant:
C : F cs → F loc.

Using Leibnitz’ rule,

Tφf = φ · f + C

(
∂φ

∂z̄
f

)
,

so the local T–invariance of F follows easily, using the D–module property of F .
Thus F loc is T–invariant.
Given this, it is easy to see that F itself is T–invariant if and only if it contains

all those functions f ∈ F loc that are analytic near ∞ and vanish at ∞. Since F∞
has this property, and F∞loc = F loc, we get the last assertion of the Theorem. ut

It is noteworthy that previous proofs of the T–invariance of various special SCS,
such as C, Lp (p > 2), Lipα, and BMO, have involved substantial spadework. This
theorem uncovers the essential pattern in these results. Of course, not all the SCS
properties are needed for this result: full affine local invariance may be relaxed
to local invariance under translations and reflection in a point. The theorem also
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throws up important new observations, such as the availability of a T–invariant
SCBS that is locally–equivalent to Lp, when p ≤ 2.

To illustrate the use of the ideas introduced here, we give a simple application.
This is a result which originated with Ahlfors in the case F = L∞, and it solves the
removability problem, modulo constructive identification of the ∂̄–F–cap null sets
(a big modulo).

Corollary. Let F be a small SCS, or the dual of a small SCS. Let K ⊂ C be

compact. Then the following are equivalent:

(1) K is ∂̄–F–null;

(2) AF∞(C ∼ K) = {0}.
(3) ∂̄–F–cap(K) = 0.

Proof. It is easy to see that the family of ∂̄–F–null compacts depends only on F loc.
So we may take F = F∞, without loss in generality.

(1) ⇒ (2) is easy: Suppose that K is ∂̄–F–null. Let f ∈AF (C ∼ K). Then
F ∈ AF (C). So f is entire. Since f ∈ F∞, we deduce f(a + ·)|B(0, 1) → 0 in the
topology of D′(B(0, 1) as a → ∞. Using a smeared Cauchy integral formula, this
is readily seen to yield f(a) → 0 as a → ∞, so Liouville’s theorem gives f = 0
identically.

(2) ⇒ (3) is trivial.
(3) ⇒ (2): Suppose that ∂̄–F–cap(K) = 0. Suppose f were a nonzero element

of AF (C ∼ K). Choose n ∈ N such that

f(z) =
an

zn
+ · · · , near∞,

with an 6= 0. Using the D–module property, and the fact that F = F∞, one sees
that zn−1f also belongs to AF (C ∼ K), hence the ∂̄–F–cap of K is nonzero.

(2) ⇒ (1): Suppose that AF (C ∼ K) = {0}. Let f ∈AF (U ∼ K) for some
open set U . We wish to show that f ∈ AF (U).

It is enough to show that f is holomorphic on each open disc D such that
clos(D) ⊂ U . Fix such a disc D.

Take φ ∈ D with φ = 1 near K ∩ closD and sptφ ⊂ U , and form Tφf . Since
F is T–invariant, and Tφf is analytic off sptφ, we have Tφf ∈ AF (C ∼ K), hence
Tφf = 0. So

∂̄f = ∂̄(f − Tφf) = (1− φ)∂̄f,

hence f is holomorphic on D ∼ K and on a neighbourhood of K ∩ clos(D), and
hence on all of D. ut
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Work in progress offers the prospect of attaining a similarly general solution to
the other two main problems posed above. In particular, the author and J. Verdera
are working on implementing the Vitushkin “coefficient matching” technique, with-
out using algebra structure or B–invariance.

6. The one–reduction.

“Most” SCS are bi–locally B–invariant, and these are easier to work with. We illus-
trate this by describing the most important technique that depends on B–invariance:
1–reduction.

Before starting, we note that the “most” excludes some very, very interesting
spaces.

There is a straightforward way to “differentiate” a SCS, F . You just form{
∂f1
∂x

+
∂f2
∂y

: f1, f2 ∈ F
}
,

and give it the naturally–induced topology. This space does not necessarily contain
D, so in fact we define the derivative of F by

DF = D+
{
∂f1
∂x

+
∂f2
∂y

: f1, f2 ∈ F
}
.

Similarly, we define the integral of F by∫
F =

{
f ∈ D′ :

∂f

∂x
∈ F and

∂f

∂y
∈ F

}
.

Again, there is a natural topology to use.

Theorem 6. If F is a bi–locally B–invariant SCS, then DF and
∫
F are also SCS,

and ∫
DF

loc= F
loc= D

∫
F.

This is the Fundamental Theorem of the Integral Calculus, for function spaces.
Part of the proof is the formula

∂̄F
loc= DF,

where ∂̄F stands for the collection of ∂̄f , where f ranges over F . Now for the SCS
of Theorem 5, to say that K is ∂̄–F–null is the same as saying that no function
g ∈ ∂̄F has support in K. This yields the 1–reduction for ∂̄:
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Corollary. Let F be a bi–locally B–invariant SCS, such that F or F∗ is a small

SCS. Let K ⊂ C be compact. Then K is ∂̄–F–null if and only if K supports no

nonzero element of DF .

This reduces the nullity problem for ∂̄–F to a problem about supports, a real–
variable problem. In many cases, one finds that the real–variable problem has
already been studied and elucidated.

As an example, consider the case F = W 2,p. The interesting range of p is [1, 2).
For 1 < p < 2, the Corollary applies, and DW 2,p loc= W 1,p, so the ∂̄–W 2,p–null sets
are the compact sets that cannot support nonzero W 1,p functions. These have been
intensively studied (Havin, Hedberg, Bagby), because they are the sets K such that
each function f ∈ Lq is the Lq limit of functions holomorphic on a neighbourhood
of K.
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