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Abstract.
Analytic capacities are set functions defined on the plane which may be used in the study
of removable singularities, boundary smoothness and approximation of analytic functions
belonging to some function space. The symmetric concrete Banach spaces form a class
of function spaces that include most spaces usually studied. The Beurling transform is a
certain singular integral operator that has proved useful in analytic function theory. It is
shown that the analytic capacity associated to each Beurling–invariant symmetric concrete
Banach space behaves reasonably under affine transformation of the plane. It is not known
how general analytic capacities behave under affine maps.

1. The Beurling Transform and Symmetric Concrete Banach Spaces.

This paper is essentially self–contained, except that it assumes a knowledge of basic Com-
plex Analysis, Functional Analysis, and Distribution Theory. We do make incidental use
of a result from the Calderon–Zygmund theory, but this could easily be replaced by an
alternative elementary but slightly more time–consuming procedure.

1. We denote by C∞ the Frechet algebra of all infinitely–differentiable complex–valued
functions on the complex plane C, and by C∞

cs the nuclear algebra of all complex–valued
test functions on C. The space of distributions on C is the dual C∞

cs
′ of C∞

cs , and the space
of distributions having compact support is the dual C∞′ of C∞. We use the notation

〈φ, f〉

to denote the action of the linear functional f on the element φ. In the case where f is
(representable by) an integrable function, this means that

〈φ, f〉 =
∫
C

φ · f dxdy.

The Beurling transform B is defined on test functions by

(Bφ)(w) = −PV
π

∫
C

φ(z)dxdy
(z − w)2

= −PV
π

∫
C

φ(w − z)dxdy
z2

, ∀φ ∈ C∞
cs .

B maps C∞
cs continuously into C∞, and is symmetric in the sense that∫

C

φ ·Bψdxdy =
∫
C

ψ ·Bφdxdy,∀φ, ψ ∈ C∞
cs .
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2. For a distribution f having compact support, we define the distribution B1f by

〈φ,B1f〉 = 〈Bφ, f〉, ∀φ ∈ C∞
cs .

In other words, B1 is the adjoint of B. Since B is symmetric, it is clear that B1 is an
extension of B from C∞

cs to C∞′. The map B1 is continuous from C∞′ into C∞
cs
′.

3. The Beurling kernel −1
πz2 is a Calderon–Zygmund cancellation kernel, and so the

Calderon–Zygmund theory [cf. Stein 1970] shows that B is a bounded map in Lp norm
whenever 1 < p < +∞. In other words, for each p ∈ (1,+∞), there exists κ(p) > 0 such
that

‖Bφ‖Lp ≤ κ‖φ‖Lp , ∀φ ∈ C∞
cs .

In particular, B is bounded in L3 norm. Also, C∞
cs is dense in L3 in L3 norm. This allows

us to define a unique extension B2 of B to L3 by requiring that

B2f = limBφn

(convergence in L3 norm) whenever the φn belong to C∞
cs and converge to f in L3 norm.

4. The two extensions of B just defined agree on the overlap L3 ∩ C∞′ of their respective
domains:

Lemma. If f ∈ C∞′ is (representable by integration against) an L3 function, then B1f =
B2f .

Proof. We may choose φn ∈ C∞
cs such that φn → f in L3 norm, and the supports of all

the φn lie inside a fixed compact set. This is enough to ensure that the φn also converge
to f in the topology of C∞′. The continuity of B1 and B2 then yields

B1f = limBφn = B2f.

Thus, since both maps are linear, we may define (unambiguously) a common extension
B3 on L3 + C∞′ by setting

B3f = B1f1 +B2f2

whenever f = f1 + f2 with f1 ∈ C∞′ and f2 ∈ L3.
Henceforth we use B to denote this extension B3.

We abbreviate L3 + C∞′ to EL3 (mnemonic for Eventually L3).

We remark that this is by no means a maximal reasonable extension of the Beurling
transform. It is simply sufficient for our purposes. In fact, we only need to use the
transform on a somewhat smaller space than EL3.

5. We denote by EAZI — the letters stand for Eventually Analytic and Zero at Infinity
— the space of all distributions f that are analytic outside some compact set and tend to
zero at infinity.
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In what follows we will have occasion to use the Beurling transform on functions of the
form f ◦T , where f ∈EAZI and T is affine. It is easy to see that EAZI is a subspace of EL3,
and that composition with affine functions maps EL3 into itself, so Bf is a well–defined
distribution when f is such a function.

6. A space F of distributions equipped with some norm is a symmetric concrete Banach
space (SCBS) if F is complete and

(1) the inclusions
C∞

cs ↪→F ↪→C∞
cs
′

are continuous,
(2) F is a topological C∞

cs –module with respect to pointwise multiplication,
(3) ‖f̄‖F = ‖f‖F , ∀f ∈ F
and
(4) compact sets of invertible affine transformations of C act equicontinuously on F

by composition: whenever K ⊂Aff is a compact set of affine tranformations there exists a
constant κ > 0 such that the distributions f ◦ T , defined by

〈φ, f ◦ T 〉 = |T |−1〈φ ◦ T−1, f〉, ∀φ ∈ C∞
cs ,

satisfy
‖f ◦ T‖F ≤ κ‖f‖F ,∀f ∈ F,∀T ∈ K.

7. We say that a symmetric concrete Banach space F is B–invariant if there exists a
constant κ > 0 such that

‖Bf‖F ≤ κ‖f‖F , ∀f ∈ F ∩ EL3.

Notice that this is slightly cavalier, in that the unwary reader might suppose that if
F is B–invariant, then F lies in the domain of B. In fact, if F∩EL3 is dense in F , then B
has a unique bounded extension to F , but otherwise this may or may not be the case. In
practice, this is not a great abuse of language. The most important SCBS are the small
ones and their duals — recall that an SCBS is small if C∞

cs is dense in it. If F is small,
then obviously F∩EL3 is dense in F . If F = G∗, where F is B–invariant and G is small,
then B has a unique weak–star continuous extension to F .

8. The Beurling transform u = Bf provides a solution to the partial differential equation
∂u

∂z̄
=
∂f

∂z
.

It is related to the Cauchy transform, which is defined for test functions by

(Cφ)(w) =
1
π

∫
C

φ(z)
z − w

dxdy

and extended to C∞′ by duality (— note that C is skew–symmetric). We have

Bf =
∂Cf

∂z
.

The function u = Cf satisfies the partial differential equation
∂u

∂z̄
= f.
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2. Analytic F–Capacities and Statement of Main Result.

1. Let F be a SCBS. We say that a distribution f is ∂̄–F–admissible for the compact set
E ⊂ C if f ∈ F , f is analytic on C ∼ E, f(∞) = 0 and ‖f‖F ≤ 1.

For such f , we denote by f ′(∞) the coefficient a1 in the Laurent expansion

f(z) =
a1

z
+
a2

z2
+ · · · .

The analytic capacity associated to F is the set function ∂̄–F–cap, defined on compact sets
E by

∂̄–F–cap(E) = sup
{
|f ′(∞)| : f is ∂̄–F–admissible for E

}
.

The original analytic capacity introduced by Ahlfors is the ∂̄–L∞–cap, and the con-
tinuous analytic capacity of Dolzhenko is the ∂̄–BC–cap. Of other analytic capacities, the
∂̄–Lipα–cap, the ∂̄–lipα–cap, the ∂̄–Lp–cap, and the ∂̄–BMO–cap have been intensively
studied.

Many analytic capacities have been constructively described up to bounded equiva-
lence, but a number have not. In attempting to define the characteristics of a genuinely
“real–variable” description, one of us (O’F) was led to consider the behaviour of analytic
capacities under (real–)affine maps. It soon became apparent that this posed a nontrivial
problem.

The question is this: Given an SCBS, F , a compact set K ⊂ C, and a compact set A
of invertible affine maps, does there exist a constant κ(F,K,A) ≥ 1 such that

∂̄–F–cap(E)
κ

≤ ∂̄–F–cap(TE) ≤ κ · ∂̄–F–cap(E)

whenever E ⊂ K and T ∈ A? If F has this property, then we say that its analytic capacity
has the affine–equivalence property.

This question remains open in general. The purpose of the present paper is to give a
partial positive result, as follows.

Theorem. Let F be a Beurling–invariant symmetric concrete Banach space. Then its
analytic capacity has the affine–equivalence property.

We will in fact find that if translation acts isometrically on F , then the constant
κ(F,K,A) may be taken of the form

κ(F,K,A) = κ1(F,K, τ),

where
τ = sup{max{‖T‖, 1/‖T‖} : T ∈ A}.

Here ‖T‖ denotes the operator norm of the derivative of T . (By the operator norm of a
linear function L : R2 → R2 we mean sup{|Lz| : |z| ≤ 1}. We will use |T | to denote the
determinant of DT .)
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The theorem covers all spaces F that are locally well–behaved under the action of
Calderon-Zygmund singular integral operators. This includes most well–known spaces. No-
torious exceptions include L∞, C0, Lip1 and the Sobolev space W 1,1. For these exceptions,
we do not know whether or not the corresponding analytic capacity is affine–invariant.

The theorem is not very interesting except for spaces of locally–integrable functions. If
F properly contains L1

loc, then singletons have positive capacity and the affine–equivalence
holds trivially. There are of course SCBS that are unrelated to L1

loc by local inclusion (i.e.
neither locally contain nor are locally contained in it), but none are well-known spaces.
Accordingly, we will present the proof in two stages: first we will cover the case when
F ⊂L1

loc, and then we will present the modification needed for the general case.
In spite of appearances, the theorem is essentially local, and is readily applicable to

more general locally–convex spaces than the SCBS. For such spaces, one defines an analytic
capacity associated to each seminorm, and the affine–equivalence property involves pairs
of such capacities in an obvious way. See section 4 below.

For quite a number of Beurling–invariant SCBS the result is already known, because
the capacity has been characterised up to bounded equivalence in real–variable terms. For
1 < α < 1, The ∂̄–Lipα–cap is comparable to (1 + α)–dimensional Hausdorff content and
the ∂̄–lipα–cap is comparable to lower (1 + α)–dimensional Hausdorff content [O’Farrell].
The ∂̄–Lip1–cap is comparable to area measure [Hruschev]. For 2 < p < +∞, the ∂̄–Lp–cap
is an extremal length [Hedberg, Bagby]. The ∂̄–BMO–cap is comparable to 1–dimensional
Hausdorff content [Kaufmann]. An example of a space for which the result is new is ZC,
the Zygmund class. The ∂̄–ZC–cap is not yet understood. The present theorem tells us
that at least its null–sets form an affine–invariant class.

We will have occasion to make use of 〈φ, f〉 in some situations where f ∈ C∞
cs
′ and φ 6∈

C∞
cs . Specifically, we will use it when φ ∈L1

loc, f ∈ C∞
cs
′, and φ is C∞ on a neighbourhood

N of the singular support S of f . The meaning we attach to 〈φ, f〉 in this context is as
follows. Choose any χ ∈ C∞ with sptχ ⊂ N and χ ≡ 1 on S. Then φχ ∈ C∞

cs , so 〈φχ, f〉
makes sense, and φ(1− χ)f ∈L1, so

∫
φ(1− χ)fdxdy makes sense. We define

〈φ, f〉 = 〈φχ, f〉+
∫
φ(1− χ)fdxdy.

It is readily seen that the result does not depend on the choice of χ. We refer to 〈φ, f〉
as the ‘formal integral’, and use the notation

∫
φfdxdy for it when there is no danger of

confusion.
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3. Proof of the Main Theorem.
The proof proceeds in steps. Throughout, we fix the Beurling–invariant SCBS, F , and we
abbreviate

γ(E) = ∂̄–F–cap(E).

We assume that γ(E) > 0 for some compact set E, since otherwise the result is trivially
true.

1. First, we define κ(K,A) to be the least constant — possibly +∞, a priori — such that

γ(TE) ≤ κγ(E)

whenever E ⊂ K and T ∈ A. It is enough for us to prove that κ(K,A) < +∞ whenever
K ⊂ C is compact and A is a compact subset of the affine group Aff.

2. For A, B ⊂Aff, let
AB = {S ◦ T : S ∈ A, T ∈ B},

and define An inductively by An+1 = AAn.
Let R denote complex conjugation:

R(x+ iy) = x− iy.

Let Bt denote the unit ball of the group of translations:

Bt = {z 7→ z + a : a ∈ C, |a| ≤ 1}.

The following lemma is well–known, and not hard to prove.

Lemma 1. Let U be any neighbourhood of the identity in GL(2,R) and let A be any
compact subset of Aff. Then there exists n ∈ N such that

A ⊂ {1, R} ·Bn
t · Un.

3. Next, we observe that

κ(K,AB) ≤ κ(TK,A) · κ(K,B),

κ(K,An) ≤ κ(K,A) · κ(TK,A) · · ·κ(Tn−1K,A)
κ(K, {1, R}Bn

t U
n) ≤ κ(K ′, {R}) · κ(K ′, Bn

t ) · κ(K ′, Un),

provided K ′ contains TK whenever T ∈ {1, R}Bn
t U

n (Notice that κ(K, {1}) = 1, and that
κ(K, {R}) ≥ 1. The latter property follows from the inequalities

γ(E) ≤ κ(K, {R})γ(RE) ≤ κ(K, {R})2γ(E),
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since there exists some set E having positive γ(E). )
Thus it suffices to show that when K is compact we have

κ(K, {R}) < +∞,

κ(K,Bt) < +∞,

and that for some neighbourhood U of 1 in GL,

κ(K,U) < +∞.

Lemma 2. κ(K, {R}) < +∞ whenever K ⊂ C is compact.

Proof. Fix E compact, E ⊂ K. Let f be ∂̄–F–admissible for R(E). Let g = f ◦R. Then
g is analytic on C ∼ E, and

‖g‖F = ‖f ◦R‖F ≤ κ1‖f‖F

for some constant κ1 independent of f , since R acts continuously on F . Thus g/κ1 is
∂̄–F–admissible for E, so

γ(E) ≥ |g′(∞)|
κ1

=
|f ′(∞)|
κ1

.

Taking the sup over all admissible f , we get

γ(E) ≥ γ(RE)
κ1

,

as required.

We remark that this result does not require the hypothesis of Beurling–invariance on
F , and that the bound obtained is independent of K. These features continue for the next
series of lemmas, until we reach the final step in Lemma 7 below.

Lemma 3. κ(K,Bt) < +∞ whenever K ⊂ C is compact.

Proof. Since F is an SCBS and Bt is compact, there exists a constant κ2 > 0 such that

‖f ◦ T‖ ≤ κ2‖f‖F

whenever T ∈ Bt.
Fix E ⊂ K, E compact, and T ∈ Bt. If f is ∂̄–F–admissible for TE, then defining

g = f ◦ T , we see that g is analytic off E, and

‖g‖F ≤ κ2‖f‖F ≤ 1,

so g/κ2 is ∂̄–F–admissible for E. As in the previous proof, we obtain

γ(E) ≥ γ(TE)
κ2

,
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as required.

4. It remains to show that for some neighbourhood U of 1 in GL, we have κ(K,U) < +∞
for each compact K ⊂ C.

Now the general element of GL is a transformation of the form{
u = ax+ by

v = cx+ dy

and may be written as the composition of a dilation, a rotation, and an invertible map{
u = x

v = cx+ dy

The latter may be written as the composition of a map of the form{
u = x

v = y + ax

and an invertible map of the form {
u = x

v = ay

Putting these observations together, and paying attention to bounds, we obtain the fol-
lowing. Let

O2 = {z 7→ eiαz : α ∈ R},
D = {z 7→ az : a ∈ R and 1/2 ≤ a ≤ 2},
Gε = {(x, y) 7→ (x, y + bx) : b ∈ R, |b| ≤ ε},
Hε = {(x, y) 7→ (x, (1 + a)y) : a ∈ R, |a| ≤ ε}.

Lemma 4. Let ε > 0 be given. The set of maps of the form T1T2T3T4, where T1 ∈ O2,
T2 ∈ D, T3 ∈ Gε and T4 ∈ Hε, is a neighbourhood of the identity in GL(2,R).

5. It remains to show that
κ(K,D) < +∞,

κ(K,O2) < +∞,

and that there exists ε > 0 such that

κ(K,Gε) < +∞

and
κ(K,Hε) < +∞.
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Note that in fact if these hold for some ε > 0, then they hold for all ε > 0, because

(Gε)n = Gnε,

(Hε)n = H((1+ε)n−1).

Lemma 5. κ(K,D) < +∞ whenever K is compact in C.

Proof. Since D is compact in Aff and F is a SCBS, there exists κ3 > 0 such that

‖f ◦ T‖F ≤ κ3 · ‖f‖F

whenever f ∈ F and T ∈ D. Also, composition with dilations preserves analyticity, so the
proof of this lemma goes through in exactly the same way as Lemma 3.

Lemma 6. κ(K,O2) < +∞ whenever K is compact in C.

Proof. This works in the same way as the previous lemma, since O2 is compact in Aff
and composition with rotations preserves analyticity.

6. This brings us to the estimate for Gε and Hε. This is the subject of the next lemma,
which is the core of the theorem, and is the only one that needs the Beurling invariance
of F .

For real ε we define the affine maps Sε and Tε by Sε(x, y) = (x, y + εx) whenever
(x, y) ∈ C, and Tε(x, y) = (x, (1 + ε)y) whenever (x, y) ∈ C.

Lemma 7. Let K ⊂ C be compact. There exists ε0 > 0 and κ ≥ 1 such that if |ε| < ε0,
then

γ(SεE) ≤ κ · γ(E)

and

γ(TεE) ≤ κ · γ(E)

whenever E is a compact subset of K.

Proof. The two estimates are very similar in proof. We will just prove the estimate for
Tε.

In the interest of clarity, we will first show how to prove the result on the additional
hypothesis that F ↪→ L1

loc. Then we will show how to modify the proof to cover the
general case.

We abbreviate Tε to T , to keep the formulas tidy. We only consider ε with |ε| < 1.
Fix E compact, E ⊂ K.
Let f be ∂̄–F–admissible for TE, with f ′(∞) real and greater than γ(TE)/2. Then

for large |z| we have

f(z) =
a1

z
+
a2

z2
+ · · ·
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and a1 = f ′(∞). So

f(z) ∼ f ′(∞)
z

,

f ′(z) ∼ −f
′(∞)
z2

,

Fix R > 0 large enough so that |z| ≤ R whenever z ∈ TE, and so that

|f(z)| ≤ 2γ(TE)
|z|

and

|f ′(z)| ≤ 2γ(TE)
|z|2

whenever |z| > R.
Note that R may depend on E via f , and not just on K and A.
We shall use const to stand for various constants that depend only on F and K. We

use λ(R) to denote constants that depend on F , K, and on R.
We abbreviate

∂ =
∂

∂z
=

1

2

(
∂

∂x
+

∂

∂y

)
, ∂̄ =

∂

∂z̄
=

1

2

(
∂

∂x
+

∂

∂y

)
.

Let g = f ◦ T . A calculation yields

∂̄g =
(
1 +

ε

2

)
(∂̄f) ◦ T − ε

2
(∂f) ◦ T,

so that
(∂̄g)(z) = − ε

2
f ′(T (z))

off E. (The corresponding calculation for h = f ◦ S yields

∂̄g =
(
1 +

ε

2

)
(∂̄f) ◦ T +

ε

2
(∂f) ◦ T.

This is the only difference between the two cases.)
Let g1 = ε · C((∂f) ◦ T ), where, as before, C denotes the Cauchy transform. Let

g2 = g − g1. Note that g2 is analytic on C ∼ E, and vanishes at ∞.
Suppose for a moment that f is smooth. We then compute (making use of the fact

that
∂

∂w

(
1

T−1(z − w)

)
= −

∂T−1(w)
∂w

(L(z − w))2

and
∂T−1(w)
∂w

=
1

2

(
1 + ε− i

1 + ε

)
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is constant (independent of w):

g1(z) =
ε

2π

∫
C

1
z − ζ

· (∂f)(T (ζ))dξdη

(where ζ = ξ + iη)

=
ε

2π|T |

∫
C

1
z − T−1w

· ∂f(w)
∂w

dudv

(where w = u+ iv and |T | is the determinant of T )

=
−ε

2π|T |

∫
C

∂

∂w

(
1

z − T−1w

)
f(w)dudv

g1(T−1z) =
(1 + ε− i)ε
2(1 + ε)2

∫
C

f(w)
(T−1(z − w))2

dudv

g1(z) =
(1 + ε− i)ε

2(1 + ε)

∫
C

f(T (ζ))
(z − ζ)2

dξdη,

=
(1 + ε− i)ε

2(1 + ε)
B(f ◦ T )(z).

Now once such a formula is true for smooth f , it is also true for general distributions.
Thus for |ε| ≤ 1

2 , we have

‖g1‖F ≤ 3 · |ε| · ‖B(f ◦ T )‖F ≤ const · ε · ‖f‖F .

Thus
‖g2‖F ≤ ‖g‖F + ‖g1‖F ≤ const,

and thus g2/const is a ∂̄–F–admissible function for E.
We proceed to use limits along the positive x–axis to evaluate and estimate

g′2(∞) = lim
x↑+∞

xg(x)− lim
x↑+∞

xg1(x).

We have
lim

x↑+∞
xg(x) = lim

x↑+∞
xf(x) = f ′(∞) > γ(TE)/2.

Also

lim
x↑+∞

xg1(x) = lim
x↑+∞

const · ε · x
∫

f(w)dudv
(x− T−1w)2

.

We split the integral

I =
∫

f(w)dudv
(x− T−1w)2

.

into the integrals over three regions:
I1 over {w : |T−1w| < x/2},
I2 over {w : |x− T−1w| < x/2},
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and
I3 over C ∼ (I1 ∪ I2).

We assume x is (much) larger than 2R‖T‖.
Since F ↪→L1

loc, we have∫
|z|≤2R

|f(z)|dxdy ≤ λ(R) · ‖f‖F ≤ λ(R).

(— following our convention, the constant λ(R) depends on F and R).
We split the integral I1 into the integral
I11 over |T−1w| < 2R‖T‖ and the integral
I12 over 2R‖T‖ ≤ |T−1w| < x/2, and we obtain

I11 ≤
4
x2

∫
|z|≤2R‖T‖

|f(z)|dxdy ≤ λ(R)
x2

,

and

I12 ≤
∫ 2π

0

∫ x/2

2R‖T‖

const · γ(TE) · rdrdθ
rx2

≤ const · γ(TE)
x

,

so

|I1| ≤
λ(R)
x2

+
const · γ(TE)

x
.

Thus for large x we have

|I1| ≤
const · γ(TE)

x
.

To estimate I2, we observe that

I2 = |T |
∫
|x−ω|<x/2

f(T (ω))
(x− ω)2

dµdν,

(where ω = T−1w = µ+ iν)

|I2| ≤ |T |
∫
|x−ω|<x/2

∣∣∣∣f(T (ω))− f(T (x))
(x− ω)2

∣∣∣∣ dµdν
≤ |T |

∫
|x−ω|<x/2

sup[x,ω] |f ′|
|x− ω|

dµdν

≤ const · γ(TE) · |T |
∫ 2π

0

∫ x/2

0

1
x2
drdθ

≤ const · γ(TE) · |T |
x

since |f ′(w)| ≤ const · γ(TE)/x2 outside |T−1w| ≤ x/2.
Finally, if x is large and w ∈ C ∼ (B1 ∪B2), then

|f(w)| ≤ const · γ(TE)
|x− T−1w|

,
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so

|I3| ≤
∫
C∼(B1∪B2)

const · γ(TE)
|x− T−1w|3

dudv

≤
∫ 2π

0

∫ ∞

x/2

const · γ(TE)
r2

drdθ

=
const · γ(TE)

x
.

Combining these estimates, we get

|xg1(x)| ≤ const · |ε| · γ(TE) ≤ const · ε0 · γ(TE)

for large x.
Provided ε0 is small enough to make

const · ε0 ≤ 1/4,

we have

| lim
x↑∞

xg1(x)| ≤
γ(TE)

4
,

so

|g′2(∞)| ≥ γ(TE)
2

− γ(TE)
4

=
γ(TE)

4
,

so

γ(E) ≥ γ(TE)
4‖g2‖F

≥ const · γ(TE).

This concludes the proof of the main theorem in the case where F ↪→L1
loc.

In order to prove the theorem in general, it is only necessary to modify the estimate
of I11, which must now be regarded as a formal integral, in the sense discussed in the
introduction.

To show that I11 is O(λ(R)/x2), choose χ ∈ C∞
cs such that χ = 1 near E and sptχ ∈

{|T−1w| < 2R‖T‖}. The choice of χ may be made independently of f . There is no problem
estimating

∫
(1− χ(w))f(w)/(x− T−1w)2 dudv, so it reduces to estimating〈

χ

(x− T−1w)2
, f

〉
.

Since F ↪→ C∞
cs
′, this expression is dominated by an expression of the form

‖f‖F · const ·
r∑

k=0

∥∥∥∥Dk

(
χ

(x− T−1w)2

)∥∥∥∥
L∞

,

where r is some natural number. But a simple application of Leibnitz’ rule shows that∣∣∣∣Dk

(
χ

(x− T−1w)2

)∣∣∣∣ ≤ ck
x2
,

so we are done.
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4. Non–Banach Spaces.

In conclusion, we indicate how the result may be extended to a wider class of spaces, the
symmetric concrete spaces (SCS). These are complete locally–convex topological vector
spaces F of distributions such that the inclusions

C∞
cs ↪→F ↪→C∞

cs
′

are continuous, F is a topological C∞
cs –module with respect to pointwise multiplication,

f 7→ f̄ is an endomorphism of F , and compact sets of invertible affine transformations of
C act equicontinuously on F by composition. The spaces C∞

cs and C∞ are non–Banach
examples. Given any SCS F , one forms new SCS

F loc = {f ∈ C∞
cs
′ : φ · f ∈ F,∀φ ∈ C∞

cs },
F cs = {f · φ : φ ∈ C∞

cs }.

Two SCS F and G are said to be locally–equivalent if F loc = Gloc.
For SCBS F , one also defines

‖f‖F (K) = inf{‖g‖F : g = f near K}

whenever f ∈ F loc and K is compact. The seminorms ‖f‖F (K) define the topology of F loc.
The space

F∞ = {f ∈ F loc : sup
a∈C

‖f‖F (B(a,1)) < +∞}

is locally–equivalent to F but is somewhat better–behaved in general. Translation acts
isometrically on F∞, and it has other nice properties.

We say that F is B–invariant if B maps F∩EL3 (with the relative F–topology, not
the intersection topology) continuously into F .

This can be quite a stringent condition, and some weaker conditions are useful:
We say that F is locally B–invariant if B maps F∩EL3 continuously into F loc.
We say that F is co–locally B–invariant if B maps F cs continuously into F .
We say that F is bi–locally B–invariant if B maps F cs continuously into F loc. This is

the weakest of the four conditions.

An analytic capacity may be associated in an obvious way to each [0,+∞]–valued
seminorm s on C∞

cs
′:

∂̄ − s− cap(E) = sup{|f ′(∞)|}

where f runs over all f ∈ F that are analytic off E, vanish at ∞, and have s(f) ≤ 1.
We say that an SCS F has the affine–equivalence property for analytic capacities if given
K compact in C, A compact in Aff, and a continuous seminorm s on F , there exists a
continuous seminorm t on F such that

∂̄ − s− cap(TE) ≤ ∂̄ − t− cap(E)

14



whenever E ⊂ K and T ∈ A. With this generalisation of the concept, it is straightforward
to prove the following generalisation of the theorem:

Theorem′. If F is a SCS and B : F∩EL3→ F is continuous in F–topology, then F has
the affine–equivalence property for analytic capacities.

With a little more effort, one can show that if F is a local SCS, i.e.F = F loc, and F is
bilocally–B–invariant, then F has the affine–equivalence property for analytic capacities.
One can also show that if F is a SCBS and F is bilocally–B–invariant, then F∞ has the
affine–equivalence property for analytic capacities. Details of this will appear elsewhere.

The space L2 illustrates the importance of F∞. The ∂̄–L2–cap is identically zero,
and so cannot be used to any effect. The ∂̄–L2

∞–cap is related to logarithmic capacity
[Hedberg] and provides a workable substitute. A similar story applies to Lp for 1 ≤ p < 2.
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