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Abstract.

The paper is about the function spaces on the plane that are invariant under the action
of the Vitushkin localisation operator, defined by

Tφf =
(
−1
πz

)
∗

(
φ · ∂̄f

)
for φ ∈ C∞cs and suitable distributions f . Such spaces are called T–invariant. The
question of T–invariance is examined in the context of translation–symmetric concrete
spaces (TSCS). Roughly speaking, these are complete locally–convex topological vector
spaces of distributions that contain the test functions, are modules under multiplication
by test functions, and are closed under complex conjugation and translation. The main
result is this:

Theorem. Suppose F is a TSCS that admits a separable translation–measurable TSCS
topology. Then F is locally T–invariant, and F∞ is T–invariant.

The most useful consequence is:

Corollary. Let (1) F be a small TSCS or (2) F be the TSCS dual of a small TSCS.
Then F is locally T–invariant, and F∞ is T–invariant.

A small TSCS is one in which C∞cs is sequentially–dense. The space F∞ is locally–
equivalent to F , and is constructed from F in a canonical way.

* Supported by EOLAS grant SC/90/070

1



1. Introduction.
Let C∞(C) denote the Frechet space of infinitely–differentiable functions f : C → C,
and let C∞cs denote the nuclear space of all functions f ∈ C∞ that have compact
support. Consider the space of complex–valued distributions on the complex plane, the
dual C∞cs

′ of C∞cs. The Cauchy transform is the convolution operator C, defined on
certain distributions f by

Cf =
(
−1
πz

)
∗ f.

More precisely, C is defined in this way on the space C∞′ of all distributions having
compact support, and it can be extended continuously to many larger topological vector
spaces of distributions, in which C∞′ is dense. The Cauchy transform inverts the ∂̄
operator

∂̄f =
∂f

∂z̄
=

1
2

(
∂f

∂x
+ ι

∂f

∂y

)
on the distributions having compact support.

The Vitushkin localisation operator is defined by

Tφf = C
(
φ · ∂̄f

)
= φ · f − C

(
(∂̄φ) · f

)
for φ ∈ C∞cs and suitable distributions f . The purpose of this paper is to discuss
the continuity properties of this operator, which has played a crucial role in connection
with a number of investigations in complex analysis. Vitushkin himself used it in his
penetrating study of uniform rational approximation [10]. Arens [1] used it to show
that the maximal ideal space of the uniform algebra of all functions continuous on a
compact set X ⊂ C and analytic on intX is X. Gamelin and Garnett [4, 5] used it in
their work on bounded analytic functions. Davie [2] used it to study the bounded and
continuous analytic capacities. The author [6, 7] and others used it in connection with
holomorphic approximation problems in Lipschitz and other norms. The utility of the
operator is explicable in terms of the equation

∂̄Tφf = φ · ∂̄f.

This shows that Tφf is analytic wherever f is and off sptφ, and that f −Tφf is analytic
on the interior of φ−1(1). Thus it may be used to split up the set of essential singularities
of f . The idea behind this goes back to the derivation of the Laurent series, based on
the splitting of a function f , analytic between two circles into a function f1, analytic
inside the outside circle, plus a function f2, analytic outside the inside circle. The usual
construction of f1 and f2 uses line integrals. Line integrals have more restricted domains
than area integrals, so one is led to use the other term of Pompeiu’s formula, replacing
the line integrals by area integrals. The result is the Vitushkin localisation operator,
with a special φ.

In some situations, one meets the operator in the variant form

TX
φ f(w) =

1
π

∫ ∫
X

f(z)− f(w)
z − w

∂φ

∂z̄
dxdy,
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where X is a closed subset of C and f : X → C is a Lebesgue–measurable function.
The study of this variant reduces to the study of the global Tφ(= TC

φ ) when, as is often
the case, there is available a suitable extension operator.

When the ∂̄ operator on C is replaced by an elliptic operator L on Rd, having a
parametrix E, then the equivalent to the Tφ operator is the operator

TL
φ f = E(φ · Lf),

defined on certain distributions f ∈ C∞(Rd,C)cs′. We will also discuss the continuity
of these operators.

It has been found over the years that the Tφ operator acts continuously on a great
variety of function spaces. This was verified in an ad hoc manner for each space as it
came up. The main point of the present paper is that there is a simple uniform way
to derive most of these results. We shall work with the class of translation–symmetric
concrete spaces (TSCS) and show that a very broad family of these spaces have the
property of local T–invariance.

In section 2, we introduce the TSCS and define some related concepts, including
small TSCS. In section 3, we lay out some constructions that start from a TSCS, F , and
produce spaces FX , F (X), F loc, F cs, F∞. We establish basic properties of these spaces.
In section 4, we study the convolution as a map from F × L1

loc to distributions, and
we establish a result (Theorem 4.1) which shows that under very general conditions,
convolution maps

F cs × L1
loc → F loc,

F cs × L1
∞ → F∞,

and, rather less generally,
F × L1 → F.

We also establish an automatic continuity result for such maps (Props. 4.3 and 4.4). In
section 5, we apply these results to the Tφ operator, and we prove the main result:

Theorem 5.5. Suppose F is a TSCS that admits a separable translation–measurable
TSCS topology. Then F is locally T–invariant, and F∞ is T–invariant.

The most useful consequence is:

Corollary 5.6. Let (1) F be a small TSCS or (2) F be the TSCS dual of a small
TSCS. Then F is locally T–invariant, and F∞ is T–invariant.

This covers most interesting spaces. We also discuss T–invariance results for more
general spaces, and similar results for other Tφ–like operators, associated to operators
other than ∂̄.

A word about notation: The special notation X ↪→ Y means that the topological
space X is a subset of the topological space Y , and that the inclusion map is continuous.
It does not mean that X has the relative topology from Y .

The dual F ∗ of a topological vector space F is the space of all continuous linear
functions T : F → C. For our purposes, there are two interesting topologies to give F ∗.
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The strong topology is that in which a neighbourhood base at the origin is provided by
the sets

polar(B) =def {T ∈ F ∗ : |Tf | ≤ 1,∀f ∈ B},

where B runs over the bounded subsets of F . The weak-star topology is defined by the
sub-base

polar({f}) = {T ∈ F ∗ : |Tf | ≤ 1},

where f runs over F . We use the notation F ∗ to denote F ∗ with the strong topology,
and F ′ to denote the same space with the weak-star topology.

The algebraic dual F † of F is the vector space of all linear functions (continuous or
not) from F to C.

We denote by i the natural map i : F → F ∗† given by

(if)(T ) = Tf , ∀T ∈ F ∗ ∀f ∈ F.

We will use the following standard theorem which tells us how to distinguish the elements
of iF from the other elements of F ∗†.

The Banach-Grothendieck Theorem. Let F be a complete LCTVS and let u ∈ F ∗†.
Then the following three conditions are equivalent:
(1)u ∈ F , i.e. u ∈ iF ;
(2)u|polar(N) is weak-star continuous, whenever N is a neighbourhood of 0 in F ;
(3)For some neighbourhood base B for 0 in F , we have that u|polar(N) is weak-star
continuous, whenever N ∈ B.
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2. Translation–symmetric Concrete Spaces.
In [8] we introduced the class of symmetric concrete spaces (SCS), which admit, among
other symmetries, the compositional action of the full affine group. The results of the
present paper do not require the hypothesis of full affine–invariance, so we define the
larger class of translation–symmetric concrete spaces. A translation–symmetric concrete
space (TSCS) on Rd is a complete locally–convex topological vector space (LCTVS), F ,
such that

1. C∞cs ↪→ F ↪→ C∞cs
′,

2. f 7→ f̄ maps F → F continuously,

3.

{
C∞cs × F → F

(φ, f) 7→ φ · f

}
makes F a topological C∞cs–module.

4. for each T ∈Tran,

cT :

{
F → F

f 7→ f ◦ T

}
is continuous

and T 7→ cT maps compact subsets of Tran to equicontinuous subsets of End(F ).

Here Tran = Tran(Rd) denotes the group of translations. For T ∈ Tran and f ∈
C∞cs

′, the ‘composition’ f ◦ T is defined by the formula

〈φ, f ◦ T 〉 = 〈φ ◦ T−1, f〉 , ∀φ ∈ C∞cs.

The map cT : f 7→ f ◦ T is a continuous linear automorphism of C∞cs
′.

If a TSCS is normable, we call it a translation–symmetric concrete Banach space
(TSCBS). If F is a metrisable TSCS, we call it a symmetric concrete Frechet space
(TSCFS). The TSCBS are the most important TSCS. The others, including C∞cs,
C∞cs

′, C∞, C∞′, the space of rapidly–decaying functions and its dual, the space of
tempered distributions, some weak-star duals of Banach spaces, and the spaces Fcs and
Floc (constructed below), are merely auxilliary.

In case F is a TSCBS, the four axioms take the following form.
1. The statement C∞cs ↪→ F means that C∞cs ⊂ F and that there exist continuous

functions ρk : Rd → [0,+∞) , (k = 0, 1, 2, ...) such that, given R > 0, all but a finite
number of the ρk vanish identically on B(0, R), and such that

‖φ‖F ≤
+∞∑
k=0

sup
{
ρk(x) · |Dkφ(x)| : x ∈ Rd

}
, ∀φ ∈ C∞cs.

The statement F ↪→ C∞cs
′ means that F ⊂ C∞cs

′ and that, given φ ∈ C∞cs,
there exists κ1(φ) > 0 such that

|〈φ, f〉| ≤ κ1(φ)‖f‖F , ∀f ∈ F .
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That f 7→ f̄ is bicontinuous means that for some constant κ2 > 1 we have

κ−1
2 · ‖f̄‖F ≤ ‖f‖F ≤ κ2 · ‖f̄‖F , ∀f ∈ F .

Thus we obtain an equivalent norm

f 7→ 1
2{‖f‖F + ‖f̄‖F }

on F for which f 7→ f̄ is an isometry.
That F is a topological C∞cs–module now means that there exist functions ρ′k, like

the ρk above, such that

‖φf‖F ≤ ‖f‖F ·
+∞∑
k=0

sup ρ′k · |Dkφ| , ∀f ∈ F , ∀φ ∈ C∞cs.

In fact, we may take it, if we want to, that ρk = ρ′k.
The equicontinuity statement of Axiom 4 just says that for K ⊂Tran, K compact,

we have
sup
T∈K

‖cT ‖ < +∞,

where ||cT || stands for the operator norm of cT on F . A word of caution is in order:
Axiom 4 does not say or imply that ‘translation is continuous’ on F , i.e. that f ◦T varies
continuously in F as T varies continuously in Tran. In fact, for reasonable spaces, the
continuity of the map T 7→ cT from Tran into the endomorphisms of F implies Axiom
4, but the converse is false. With F = L∞, each cT is an isometry, but translation is
discontinuous.

Definition. An TSCS is called small if C∞cs is sequentially dense in it.

As examples, Lp, Ck, Lipα, lipα, BMO, VMO, Sobolev spaces, Besov spaces, Bloch
space, Zygmund class (ZC) and Zygmund smooth class (ZS) are TSCS. The space Lp is
small if p < +∞. Other small spaces are Ck, lipα, VMOloc, and ZSloc.
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3. Some TSCS constructions.
We summarise the relevant points from TSCS theory. These parallel the corresponding
facts from SCS theory, and the reader who would like to see more details could consult
[9].

Let F be a TSCS. To a closed subset X ⊂ Rd, we associate spaces F (X) — germs
on X, FX — elements of F that are supported on X, and in terms of these we topologise
the spaces

F loc = C∞ · F and F cs = C∞cs · F.

The definitions are as follows.
For E ⊂ Rd, we define

FE = {f ∈ F : sptf ⊂ E}.

This FE is a vector subspace of F , and is closed in F whenever E is closed in Rd. For
compact X ⊂ Rd, we define

J(F,X) = closF (FRd∼X
),

F (X) = F/J(F,X),

and we give F (X) the quotient topology, so that it becomes a complete LCTVS. If F
is Banach, then so is F (X) with the norm

‖f + J(F,X)‖F (X) = inf{‖g‖F : g − f ∈ J(F,X)}.

We use the notation
f |X = f + J(F,X),

‖f‖F (X) = ‖f |X‖F (X),

for f ∈ F ,and we call the map {
f 7→ f |X
F →→ F (X)

restriction to X. Observe that in fact

‖f‖F (X) = inf{‖g‖F : g = f near X}.

As an example,

Lp
E = {f ∈ Lp : f = 0 a.e. off a compact subset of E}

J(Lp, X) = {f ∈ Lp : f = 0 a.e. on X}

and Lp(X), as defined here, namely

Lp/J(Lp, X),

is isometrically isomorphic to Lp(X,md|X).
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If E1 ⊂ E2 ⊂ Rd, we have the inclusion FE1 ⊂ FE2 . Thus for compacta X1 ⊂ X2,
we get continuous maps

J(F,X2) ↪→ J(F,X1),
F (X2) →→ F (X1).

We call the latter map a restriction also. This is consistent, because the diagram of
restrictions

F
↙ ↘

F (X2) → F (X1)

commutes. In the Banach space case, these restrictions are contractions.

We define

Floc = C∞ · F = {f ∈ C∞cs
′ : φf ∈ F, ∀φ ∈ C∞cs},

Fcs = C∞cs · F = C∞′ ∩ F.
The ‘loc’ stands for ‘local’ and the ‘cs’ for ‘compact support’. These spaces inherit
natural topologies which make them symmetric concrete spaces. The topology of F loc

is the locally–convex projective limit topology induced by the identification

Floc =
←
lim

Xcompact
F (X).

In other words, each restriction
Floc →→ F (X)

is continuous, and the topology is the minimal locally-convex topology with this prop-
erty. If F is a Banach space, then F locis a Frechet space, with topology defined by the
seminorms

f 7→ ‖f‖F (X), X compact.

The topology on
Fcs =

⋃
X compact

FX

is the locally–convex inductive limit topology, i.e. each of the inclusions FX ↪→ Fcs is
continuous and the topology is the largest locally-convex topology with this property.
In other words, a convex set G ⊂ Fcs is open if and only if G ∩ FX is open in FX , for
each compact X ⊂ Rd. In terms of seminorms, the topology of Fcs may be defined by
the seminorms of the form

f 7→
+∞∑
k=1

sk(f) · sup
x∈Rd

ρk(x),

where sk(k = 1, 2, 3, ...) are continuous seminorms on F and ρk : Rd → [0,∞) are
continuous functions such that on each compact set all but a finite number vanish.

Happily, C∞cs = (C∞) cs.

8



Proposition 3.1. If F is a TSCS, then so are Floc and Fcs.

Proof. We give the details for F loc. The other is similar.
Each Cauchy net {fα} ⊂ F loc restricts to a Cauchy net in each F (X),hence con-

verges in each F (X). The limits are consistent under restriction, hence define an element
f ∈ F loc, and fα → f in F loc (because this just says that fα|X → f |X for each compact
X). Thus F locis complete.

Axioms 1 and 2 are simple to check.
To prove Axiom 3, we must show the continuity of the map

C∞cs × F loc → F loc,

(φ, f) 7→ φf.

Take a seminorm t : F loc → [0,∞), induced by restricting a seminorm s : F → [0,∞)to
a compact set X, i.e.

t(f) = inf{s(g) : g ∈ F, g = f near X}.

Since C∞cs×F → F is continuous there is a seminorm u : F → [0,∞) and a collection
of continuous functions ρk : Rd → [0,∞), such that on each compact K ⊂ Rd, all but a
finite number of ρk vanish, and such that

s(φf) ≤ u(f) ·
+∞∑
k=0

sup
x∈Rd

ρk(x)|Dkφ(x)| , ∀φ ∈ C∞cs , ∀f ∈ F .

Take a function χ ∈ C∞cs such that χ = 1 near X and let v : F loc → [0,∞) be the
seminorm induced by restricting u to sptχ. Then

t(φf) = t(χφf) ≤ v(f) ·
+∞∑
k=0

sup
Rd

ρk|Dk(χφ)|

whenever φ ∈ C∞cs and f ∈ F loc, and the map

φ 7→
+∞∑
k=0

sup ρk|Dk(χφ)|

is a continuous seminorm on C∞cs. Thus the map C∞cs × F loc → F loc is continuous.
The proof of Axiom 4 is broadly similar, and we omit the details.

The most useful equivalence relation on TSCS is local equivalence, defined by

F1
loc= F2 ⇔ F1loc = F2loc.

The notion of local (continuous) inclusion, defined by

F1
loc
↪→ F2 ⇔ F1loc ↪→ F2loc,
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gives a partial order on the local equivalence classes. It turns out that for Frechet TSCS
the continuity of inclusion maps is automatic. In other words, for metrisable TSCS,
F1 ⊂ F2 is equivalent to F1 ↪→ F2, so that

F1
loc
↪→ F2 ⇔ F1loc ⊂ F2loc.

The usefulness of the notion of local inclusion is illustrated by the Lp spaces. One

never has Lp ↪→ Lq if p 6= q, but Lp loc
↪→ Lq if and only if p ≥ q, so

loc
↪→ gives a linear

order on the Lp spaces. In general,
loc
↪→ is not a total order on the TSCS. For instance,

in two dimensions, the space C = C0 of continuous functions and the Sobolev space

W 1,2 are unrelated by
loc
↪→

The following “F∞ construction” is useful:
The space F∞ associated to an TSCS, F , is the set of all those f ∈ F loc such that

f(·+ a)|B(0, 1) → 0

in F (B(0, 1))–topology as a→∞.
Given F ∈TSCS, let F∞ denote the space of all those f ∈ F loc, such that

f(·+ a)|B(0, 1) → 0

in the topology of F (B(0, 1)), as a → ∞. Here f(· + a) denotes the composition of f
with the translation x 7→ x+ a, i.e.

〈φ, f(·+ a)〉 = 〈x 7→ φ(x− a), f〉 , ∀φ ∈ C∞cs.

The topology of F∞ is defined by the seminorms u obtained as follows. Take a seminorm
s : F → [0,+∞). Let t : F (B(0, 1)) → [0,+∞) be the induced seminorm, given by

t(h) = inf{s(f) : f |B(0, 1) = h}.

The seminorm u : F∞ → [0,+∞) is defined by

u(f) = sup{t(f(·+ a)) : a ∈ Rd}.

If F is a Banach space, then so is F∞, and the norm is given by

‖f‖F∞ = sup{‖f(·+ a)‖F (B(0,1)) : a ∈ Rd}.

In general, F∞ is a new TSCS, and is locally equivalent to F .
As an example, Lp

∞ is the space of those f ∈ Lp
loc such that

‖f‖Lp(B(a,1)) → 0 as a→∞,

and its norm is given by
‖f‖Lp

∞
= sup

a∈Rd

‖f‖Lp
(B(a,1).
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Observe that the topology of F∞ is defined by a family of translation-invariant
seminorms. Thus the family of all translations is equicontinuous on F∞. If F is a
Banach space, then each translation is an isometry on F∞.

The space F∞ may be larger or smaller than the original F . For instance, C0
∞ is

the space, often denoted C0, of continuous functions that tend to zero at infinity, and
is smaller than C0, whereas L2

∞ is the space of measurable functions that have∫
B(a,1)

|f |2dx→ 0

as a→∞, and is larger than L2.

For any TSCS, F , there is a canonical map i : F ∗ → C∞cs
′, the adjoint of the

inclusion map C∞cs ↪→ F . This map is injective if and only if C∞cs is dense in F (by
the Hahn-Banach theorem). Once that happens, both F ∗ (the strong dual) and F ′ (the
weak-star dual) are isomorphic to symmetric concrete spaces, and we refer to the image
of F ∗ in C∞cs

′ as the concrete dual of F . For instance, Lq is the concrete dual of Lp

when 1 ≤ p < +∞, q = p/(p− 1).
In the opposite direction, if a TSCS, F , is isomorphic to the dual of some LCTVS,

G, then G itself is isomorphic to some TSCS if and only if C∞cs is weak-star dense in
F . Indeed, this follows on applying the remark of the last paragraph to (F , weak-star).

When a TSCBS is a concrete dual space F ∗, it is occasionally useful to pass to F ′

to get results about F ∗. For instance, F ′ is separable, whereas F ∗ may not be. The
most important examples are the spaces L∞ and Lipα (see below).

Let F be an TSCS in which C∞cs is dense. For closed X ⊂ Rd, consider the spaces:

F (X)∗ : the dual of the restriction space F (X),
(F ∗)X : the space of elements of the dual F ∗ having support in X,
F ∗(X) : the restriction of the dual space, and
(FX)∗ : the dual of the space of elements of F that are supported on X.
There is a duality between these restriction spaces and support spaces, given by

the following.

Proposition 3.2. If C∞cs is dense in the TSCS F and X is a closed subset of Rd, then

F (X)∗ = (F ∗)X , (FX)∗ = F ∗(X).

(Strictly speaking these equalities are natural isomorphisms.)

Proof. We give the details for the first part. The other part is proved in a similar way.
The map

F (X)∗ → F ∗

T 7→ g

where 〈f, g〉 = 〈f |X,T 〉 ,∀f ∈ F , sends F (X)∗ injectively and continuously into (F ∗)X .
To see that it is onto, it suffices to fix g ∈ (F ∗)X and show that g annihilates J(F,X).
For this, it suffices to show that 〈f, g〉 = 0 whenever f ∈ F has support disjoint from
X. Fix such an f , and let ψ ∈ C∞cs be such that ψ = 1 near sptf . Take a net {φα},
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with φα → f in F . By the module property of F , ψφα → ψf in F topology, hence
(1− ψ)φα → (1− ψ)f = f , whence 0 = 〈(1− ψ)φα, g〉 → 〈f, g〉. We conclude that

F (X)∗ → (F ∗)X

is an isomorphism.

In the event that the space F is an SCS, then so are the spaces F loc, F cs, and F∞.

4. Convolution on TSCS.

We now consider the action of convolution by a locally–integrable function on elements
of a translation–symmetric concrete space.

For Lebesgue measurable functions f, g : Rd → C, the convolution (f ∗ g)(x) is
defined by

(f ∗ g)(x) =
∫
f(x− y)g(y) dy

whenever f(x− ·)g ∈ L1.
Convolution may be extended to various kinds of distributions, by starting from

the observation that∫
(f ∗ g)(x)h(x)dx =

∫ ∫
f(z)g(y)h(y + z) dy dz

whenever f, g, h ∈ C∞csS. this formula suggests the definition

〈φ, f ∗ g〉 = 〈z 7→ 〈y 7→ φ(y + z), f〉, g〉 , ∀φ ∈ C∞cs

for the convolution of distributions f and g. This makes sense, for instance, when one
of f , g has compact support. Thus we may consider it for f ∈ F cs and g ∈ L1

loc. If
the map f 7→ f ∗ g is F1–topology to F2–topology continuous on F1cs, then it extends
to a unique continuous map of F1 into F2. We consider when this might occur, with
particular reference to the cases when F1 and F2 are locally–equivalent. There is quite
a variety of possible results. We will give three in the following proposition, but first
we need a definition.

Definition. Let F be a TSCS. We say that translation is weakly measurable on F if
each of the functions

y 7→ 〈τyf, h〉,

is Lebesgue measurable, where h ∈ F ∗, f ∈ F , and τyf denotes the translation of f by
−y:

〈ψ, τyf〉 = 〈x 7→ ψ(x+ y), f〉 , ∀ψ ∈ C∞cs.

For instance, translation is weakly measurable on Lp, p < +∞, on Ck, and on (L∞,
weak–star). We will shortly see other cases.
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Theorem 4.1. Suppose an TSCS, F , is separable and that translation is weakly mea-
surable on F . Then:

(1) Convolution maps F cs × L1
loc → F loc, continuously.

(2) Convolution maps F cs × L1
∞ → F∞, continuously.

(3) Suppose in addition that all translations act equicontinuously on F . Then convo-
lution maps F × L1 → F , continuously.

Remark. Part (2) looks somewhat arcane, but is useful because some interesting
convolution kernels like the Cauchy kernel in C and the Newtonian kernel in Rd (d > 2)
belong to L1

∞.

Proof. We give the details for (1). Let g ∈ L1
∞, and f ∈ F cs. We begin by extending

the domain of f ∗ g from C∞cs to (F loc)∗ = (F ∗)cs, i.e. we define f ∗ g as a linear
functional from (F loc)∗ to C, by setting

〈h, f ∗ g〉 =
∫
〈h, τyf〉g(y) dy , ∀h ∈ (F loc)∗.

The Lebesgue measurable function u : y 7→ 〈h, τyf〉 is bounded, and vanishes off a
compact set, because sptf is compact and h is continuous on some F (X), X compact.
Thus f ∗ g is a well- defined linear functional on (F loc)∗. To show it actually belongs
to F loc, it suffices, by the Banach-Grothendieck theorem, to show that f ∗ g is weak–
star continuous on equicontinuous subsets of (F loc)∗. Using the separability of F loc, it
reduces to showing that if a bounded sequence {hn}+∞n=1 ⊂ (F loc)∗ converges weak-star
to h ∈ (F loc)∗, then

〈hn, f ∗ g〉 → 〈h, f ∗ g〉.

For each y ∈ Rd, we have
〈hn, f ∗ g〉 → 〈h, τyf〉.

Since {hn}+∞n=1 is bounded, there is a seminorm s on F loc such that {hn}+∞n=1 ⊂ polar{s ≤
1}, i.e.

|〈hn, τyf〉| ≤ s(τyf) , ∀y ∈ Rd , ∀n ∈ N.

Since s(g) = 0 when sptg is outside a certain compact, and sptf is compact, axiom 4
yields a constant M > 0 such that

s(τyf) ≤M , ∀y ∈ Rd.

Thus the Lebesgue dominated convergence theorem yields∫
〈hn, τyf〉g(y) dy →

∫
〈h, τyf〉g(y) dy,

which is what we want.

The experts will recognise the foregoing as a variant of a standard result on vector
integration ([3], Theorem (8.14.14) p. 570). One might remark that the intuition behind
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this result is quite simple. Convolving a distribution with a locally–integrable function
is a process of taking limits of averages over translates of the distribution. TSCS are
nicely preserved under translation, and they are complete, so that it is reasonable to
suppose that they will be essentially preserved by convolutions.

Definition. We say that F is countably sequentially generated by C∞cs if C∞cs is
dense in F in the following special way: Let F1 be the sequential closure of C∞cs in F .
Let Fω+1 be the sequential closure of Fω. For limit ordinals ω, let Fω be the union of
the Fβ , β < ω. The assumption is that F = Fℵ1 .

For metrisable TSCS, F is countably sequentially generated by C∞cs if and only if
C∞cs is dense in F .

Lemma 4.2. Suppose F is a TSCS and is countably sequentially generated by C∞cs.
Then F is separable and translation is weakly–measurable on F .

Proof. The space C∞cs is separable, and is F–dense in F , hence any countable C∞cs–
dense subset of C∞cs is F–dense in F . Consequently, F ∗ is a space of distributions.

For φ ∈ C∞cs and g ∈ F ∗, the function

x 7→ 〈(y 7→ φ(x+ y)), g〉

is continuous, and it follows from the hypothesis that for f ∈ F , the function

x 7→ 〈τxf, h〉

is a Baire function, and hence is Lebesgue measurable.

The main consequence is that Theorem 4.1 applies in the cases when:

(1) F is any small TSCS, and in particular any Banach space in which C∞cs is dense,
(2) F is the weak-star dual G′ of any small TSCS, G.

An important point to note is that even in the second case we get a strong continuity
result for f ∗ g. We formalise this, first in the Banach space case.

Proposition 4.3. Let F be a TSCBS (separable or not).
(1) Suppose only that convolution maps F cs × L1

loc → F loc. Then for each compact
X ⊂ Rd, there exists a compact set Y (X) ⊂ Rd and a constant κ(X) > 0 such that

‖f ∗ g‖F (X) ≤ κ · ‖f‖F · ‖g‖L1
(Y )

whenever sptf ⊂ B(0, 1).
(2) Suppose only that convolution maps F cs × L1

∞ → F loc. Then for each compact
X ⊂ Rd, there exists κ(X) > 0 such that

‖f ∗ g‖F (X) ≤ κ · ‖f‖F · ‖g‖L1
∞

whenever sptf ⊂ B(0, 1).
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(2) Suppose all translations are isometries on F , and convolution maps F × L1 → F
(continuously or not). Then

‖f ∗ g‖F ≤ ‖f‖F · ‖g‖L1 .

Hence, ∗ : F × L1 → F is in fact continuous.

Proof. We prove only (3), since the others are similar. For f ∈ F, g ∈ L1, h ∈ F ∗, we
have

|〈h, f ∗ g〉| = |
∫
〈h, τyf〉g(y) dy|

≤ ‖h‖F∗ · ‖f‖F · ‖g‖L1 ,

and this suffices.

Remark. The point is that as soon as the integrals all exist, f ∗ g is an element of F ∗∗,
and the map F × L1 → F ∗∗ is continuous. If for some reason we know that f ∗ g ∈ F ,
then we get the estimate, because the injection F → F ∗∗ is an isometry.

In the general case we have this:

Proposition 4.4. Let F be a TSCS, and suppose that convolution maps

F cs × L1
loc → F loc.

Then the map is continuous.

Proof. Similar to the last.
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5. Operators.

Definition. Let S be an operator defined on a set of distributions, with values in the
set of distributions.

We say that a topological vector space F ⊂ C∞cs
′ is S–invariant if F lies in the

domain of S and S maps F into F , continuously (with respect to the topology of F ).
This is standard terminology, but we wish to introduce some more, useful when F is an
TSCS.

We say that F is locally S–invariant if S : F → F loc, continuously.
We say that F is co–locally S–invariant if S : F cs → F , continuously.
We say that F is bi–locally S–invariant if S : F cs → F loc, continuously.

We make the convention that T–invariant means Tφ–invariant, for each φ ∈ C∞cs.
In fact, invariance under Tφ’s is actually of interest for a wider class of spaces than the
TSCS, so we allow for that in the following definition.

Definition. We say that a LCTVS F of distributions is T–invariant if Tφ : F → F
continuously, whenever φ ∈ C∞cs.

First we discuss invariance under the Cauchy transform, C.
For general TSCS, F , the ∂̄–problem,

∂̄u = f (1)

with f ∈ F , can rarely be solved with u ∈ F . For instance, it cannot be done in the case
F = C∞cs, or more generally, whenever F = F cs. This is clear, because in these cases
the Cauchy transform necessarily gives the (unique) solution, and there are functions
f ∈ C∞cs whose Cauchy transform does not have compact support. More generally, it
is usually the case that all solutions of (1) behave a little bit worse at ∞ than f does.
What saves this situation is that in all reasonable spaces, the Cauchy transform C maps
F cs into F loc, so that (1), with f ∈ F cs, has a solution u ∈ F loc.

Lemma 5.1. Suppose F is a TSCS that admits a TSCS topology with respect to which
it is separable and translation is weakly measurable. Then F is bi–locally C–invariant.

Proof. By Theorem 4.1, convolution maps F cs × L1
loc into F loc, and by Prop. 4.4 the

map is continuous with respect to any TSCS topology on F . Since 1/z belongs to L1
loc,

that suffices.

Now we relate T–invariance to C–invariance.

Lemma 5.2. Let F be a TSCS. Then the following are equivalent:
(1) F is T–invariant,
(2) F is co–locally T–invariant,
(3) F is co–locally C–invariant.

Proof. This is more-or-less obvious, in the light of the formula

Tφf = C
(
φ · ∂̄f

)
.
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If F is a bi–locally C–invariant TSCS, then of course F loc is T–invariant, so there are
T–invariant TSCS in the local-equivalence class of F . Usually, F loc is a good deal larger
than F , and it is desirable to identify smaller T–invariant spaces, locally-equivalent to
F . First, we must determine what distinguishes the co–locally C–invariant TSCS among
the bi–locally C–invariant ones. The criterion is very simple.

Lemma 5.3. Let F be a bi–locally C–invariant TSCS. Then F is T–invariant if and
only if it contains all those distributions f ∈ F loc such that f is holomorphic on a full
neighbourhood of ∞, and f(∞) = 0.

Proof. A distribution f is of the form Cg for some distribution g having compact
support, if and only if f is holomorphic on a full neighbourhood of ∞ and f(∞) = 0.
Let us denote the set of such distributions by E.

“if”: Suppose F contains F loc ∩ E. If f ∈ F and φ ∈ C∞cs, then Tφf belongs to
F loc since F is bi–locally C–invariant, and belongs to E since spt(φ · ∂̄f) has compact
support. Hence, it belongs to F . The continuity of the map Tφ : F → F follows from
Prop. 4.5.

“only if”: Suppose F is T–invariant and fix f ∈ F loc ∩E. Take any φ ∈ C∞cs that
equals 1 on a neighbourhood of spt∂̄f . Then Tφf = C∂̄f = f , so f ∈ F , as required.

Now the space F loc ∩ E of the above proof is not a TSCS. It is not closed under
complex conjugation. We can eliminate that problem by replacing the word “analytic”
by “harmonic” in the definition of the space E. The resulting space,

{f ∈ F loc : f is harmonic off a compact and tends to 0 at ∞},

is the least TSCS that contains F loc ∩ E and is thus the least T–invariant TSCS in
the local–equivalence class. It is not, however, an SCS, because it lacks full affine–
invariance, and the least SCS that contains it is difficult to describe in explicit terms.
For applications which require affine–invariance, the situation is saved by the following
convenient fact (— recall that F∞ is an SCS if F is).

Lemma 5.4. Let F be a bi–locally C–invariant TSCS. Then F∞ is a T–invariant TSCS.

Proof. If we take a function f ∈ F loc ∩E, then for large |a|, f(a+ ·) is analytic on
a neighbourhood of B(0, 1), and hence belongs to C∞cs(B(0, 1)), and it is easy to see
that it tends to 0 in C∞cs(B(0, 1)). Thus it tends to 0 in F (B(0, 1)), since C∞cs ↪→ F .
Thus the condition of Prop.4 is satisfied, so that F∞ is T–invariant.

The space F∞ inherits properties of F such as normability and metrisability. In
general, it is neither larger than nor smaller than F . It is an invariant of the local-
equivalence class of F . The family of all translations acts equicontinuously on it (—
isometrically, in the Banach case). It is presumably a little larger than the minimal
T–invariant TSCS in the local-equivalence class, but this is a small price to pay for its
other desirable properties. Experience shows that it is, in any case, very little larger
than the minimum.
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For example, all the spaces Lp for all p > 2, C0, BCk for all k ∈ N, Lipβ and lipβ
for β > 0, ZC, ZS, Wk,p for all k ∈ N and all p > 1, are T–invariant TSCBS’s (—
indeed SCS’s). The spaces Lp with 1 ≤ p ≤ 2 and W1,1 are locally T–invariant, but
not T–invariant. When T–invariance is needed, they may be replaced by the (larger)
Banach spaces Lp

∞ and W1,1∞.

Theorem 5.5. Suppose F is a TSCS that admits a separable translation–measurable
TSCS topology. Then F is locally T–invariant, and F∞ is T–invariant.

Proof. Combine the lemmas.

We state separately the most useful special cases:

Corollary 5.6. Let (1) F be a small TSCS or (2) F be the TSCS dual of a small
TSCS. Then F is locally T–invariant, and F∞ is T–invariant.

It is noteworthy that previous proofs of the T–invariance of various special TSCS,
such as C, Lp (p > 2), Lipα, and BMO, have involved substantial spadework. This
theorem uncovers the essential pattern in these results. The theorem also throws up
useful new observations, such as the availability of a T–invariant SCBS that is locally–
equivalent to L2.

The most useful T–invariant spaces that are not TSCS are the spaces AC∞cs
′(U)

of distributions analytic on a given open set U ⊂ S2. Since the intersection of two
T–invariant spaces is T–invariant, we obtain the following.

Proposition 5.7. Let F be a T–invariant space and let U ⊂ S2. Then

AF (U) = {f ∈ F : f is analytic on U}

is T–invariant.

The next proposition provides other ways to extend the list of T–invariant spaces.

Proposition 5.8. (1) Let E be a T–invariant space and let F be a T–invariant TSCS
that contains E. Then the closure of E in F is T–invariant.
(2) Let {Eα} be a net of T–invariant spaces, directed by continuous inclusion maps,
and let E be

⋃
Eα with the inductive limit topology. Then E is T–invariant.

(3) Let {Eα} be an arbitrary family of T–invariant spaces. Then
⋂

αEα is a T–invariant
space.

For instance, this can be combined with results above to show that the space of
uniform limits on C of sequences of Lip1 functions that are analytic on a neighbourhood
of a certain closed set X, is T–invariant, as is the space of functions approximable in
L4 by functions analytic near a given compact and belonging to some Lp for p > 8 (p
may depend on the function).
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Finally we note that the only properties of the Tφ operator used in the above proofs
are that the kernel involved,

−1
πz

is locally–integrable, and its translates

−1
π(z − a)

tend to zero in
C∞(B(0, 1))

as a → ∞. Consequently, the results carry over to the TL
φ operator associated to

any elliptic operator L that has a parametrix, as long as the parametrix shares these
properties. For instance, they work for the Laplacian in d–dimensions if d > 2. For
general smooth elliptic operators having a parametrix, the behaviour at ∞ will be bad,
but we still get the local–integrability, and hence the local TL–invariance.
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